首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   7篇
综合类   2篇
化学工业   32篇
金属工艺   3篇
建筑科学   1篇
能源动力   14篇
轻工业   1篇
无线电   13篇
一般工业技术   38篇
冶金工业   20篇
自动化技术   2篇
  2021年   5篇
  2019年   4篇
  2018年   3篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   8篇
  2011年   11篇
  2010年   8篇
  2009年   7篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2000年   2篇
  1999年   2篇
  1998年   9篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
  1968年   1篇
  1960年   1篇
排序方式: 共有126条查询结果,搜索用时 674 毫秒
1.
Silver/superconductor composites containing 0 to 80 vol% silver have been prepared and their properties determined. Optimum heat treatment at sintering temperatures ( 800° C) under low oxygen pressures produces material with high critical current density and improves physical properties. Magnetic susceptibility measurements have been found to be consistent with resistivity results. In order to retain a single high-T c phase with increasing silver content, decreased oxygen partial pressures are required. Using the normal-state resistivity of these composites, a percolation threshold at a silver volume fraction of 43% was observed, while zero resistivity measurements show that a continuous superconducting network can be obtained with up to 80 vol% silver. The critical current density of 21 vol% silver-doped samples was found to be 1520 A cm–2 at 77.3 K, compared to 260 A cm–2 for an undoped sample.  相似文献   
2.
The present work describes the method of the measurement of thermoelectric power of oxide materials under the gas phase of controlled oxygen activity with high accuracy. The present study reports the thermopower data for undoped CaTiO3 at elevated temperatures (973–1323 K) and under the oxygen partial pressure in the range 10–105 Pa. The obtained experimental data indicate lack of consistency between the thermopower data determined in this work and the electrical conductivity data reported before with respect to the n–p transition point, that is, the p(O2) corresponding to the minimum of electrical conductivity differs from that at which S=0. The thermopower data were used to establish the temperature dependence of the electrical conductivity at constant thermopower. The obtained activation energy is in the range 119 kJ/mol in the n- and n–p transition regimes and assumes 146 kJ/mol in the p-type regime.  相似文献   
3.
Ab initio density functional theory calculations of the relative stability of the anatase and rutile polymorphs of TiO2 were carried out using all-electron atomic orbitals methods with local density approximation. The rutile phase exhibited a moderate margin of stability of ~ 3 meV relative to the anatase phase in pristine material. From computational analysis of the formation energies of Si, Al, Fe and F dopants of various charge states across different Fermi level energies in anatase and in rutile, it was found that the cationic dopants are most stable in Ti substitutional lattice positions while formation energy is minimised for F? doping in interstitial positions. All dopants were found to considerably stabilise anatase relative to the rutile phase, suggesting the anatase to rutile phase transformation is inhibited in such systems with the dopants ranked F?>?Si?>?Fe?>?Al in order of anatase stabilisation strength. Al and Fe dopants were found to act as shallow acceptors with charge compensation achieved through the formation of mobile carriers rather than the formation of anion vacancies.  相似文献   
4.
This review paper summarises and evaluates the evidence regarding four issues that are considered to be of critical importance for future global oil supply. These are: a) how regional and global oil resources are distributed between different sizes of field; b) why estimates of the recoverable resources from individual fields tend to grow over time and the current and likely future contribution of this to global reserve additions; c) how rapidly the production from different categories of field is declining and how this may be expected to change in the future; and d) how rapidly the remaining recoverable resources in a field or region can be produced. It is shown that, despite serious data limitations, the level of knowledge of each of these issues has improved considerably over the past decade. While the evidence on reserve growth appears relatively encouraging for future global oil supply, that on decline and depletion rates does not. Projections of future global oil supply that use assumptions inconsistent with this evidence base are likely to be in error.  相似文献   
5.
A corrosion cup test was undertaken using BaAl2Si2O8 and Al4.1Zn3.2Mg alloy, heated in air for 150 h at 850°C. Electron probe microanalysis, X‐ray diffraction, and scanning electron microscopy coupled with energy dispersive spectroscopy were used to identify the mineralogical and microstructural changes at the interfaces. The microstructural results revealed three microstructural areas: (1) Spinel layer with large numbers of Al alloy channels; (2) interfacial area with mainly alumina, spinel, and BaAl2Si2O8; and (3) interdiffusion zone chemically close to barium hexaaluminate. The principal observations are:
    相似文献   
6.
TiO2 thin films doped with ≤7 mol% Mn (metal basis) were deposited on F-doped SnO2-coated (FTO) glass substrates by spin coating. The structural, morphological, and optical properties of the films were investigated by glancing angle X-ray diffraction (GAXRD), laser Raman microspectroscopy, field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectroscopy (UV–VIS). Mn doping of TiO2 (anatase) extended the optical absorption edge to longer wavelengths (lower photon energies) significantly lowering the band gap from 3.32 eV (undoped) to 2.90 (7 mol% Mn). The absorption edges of all films were sharp and the transparencies in the visible region were in the range 60–75%. All of the films were homogeneous, fully dense, and essentially crack-free.  相似文献   
7.
Hydroxyapatite (HAp) coatings were deposited onto substrates of metal biomaterials (Ti, Ti6Al4V, and 316L stainless steel) by electrophoretic deposition (EPD). Only ultra-high surface area HAp powder, prepared by the metathesis method 10Ca(NO3)2 + 6(NH4)2HPO4 + 8NH4OH), could produce dense coatings when sintered at 875–1000°C. Single EPD coatings cracked during sintering owing to the 15–18% sintering shrinkage, but the HAp did not decompose. The use of dual coatings (coat, sinter, coat, sinter) resolved the cracking problem. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) inspection revealed that the second coating filled in the valleys in the cracks of the first coating. The interfacial shear strength of the dual coatings was found, by ASTM F1044-87, to be 12 MPa on a titanium substrate and 22 MPa on 316L stainless steel, comparing quite favorably with the 34 MPa benchmark (the shear strength of bovine cortical bone was found to be 34 MPa). Stainless steel gave the better result since -316L (20.5 m mK-1) > -HAp (14 m mK-1), resulting in residual compressive stresses in the coating, whereas -titanium (10.3 m mK-1) < -HAp, resulting in residual tensile stresses in the coating. © 1999 Kluwer Academic Publishers  相似文献   
8.
Improvements in energy efficiency make energy services cheaper, and therefore encourage increased consumption of those services. This so-called direct rebound effect offsets the energy savings that may otherwise be achieved. This paper provides an overview of the theoretical and methodological issues relevant to estimating the direct rebound effect and summarises the empirical estimates that are currently available. The paper focuses entirely on household energy services, since this is where most of the evidence lies and points to a number of potential sources of bias that may lead the effect to be overestimated. For household energy services in the OECD, the paper concludes that the direct rebound effect should generally be less than 30%.  相似文献   
9.
The present paper considers the effect of oxygen partial pressure on the presence of point defects in calcium titanate (CaTiO3) at elevated temperatures at which a gas/solid equilibrium is reached. Defect models of undoped (CaTiO3) are considered within several regimes of oxygen partial pressures involving (i) extremely reducing conditions, (ii) reducing conditions, and (iii) oxidizing conditions, which are described by different charge-neutrality conditions. The mechanism of donor incorporation is considered in terms of both ionic and electronic charge compensation. It is shown that electronic and ionic charge compensations prevail at low and high p(O2), respectively.  相似文献   
10.
Interfacial reactions between Al-alloy and andalusite low-cement castables (LCC) containing 5 wt% V2O5 were analyzed at 850 °C and 1160 °C using the Alcoa cup test. Interfacial reaction products and phases formed during heat treatment of the refractory samples were characterized using scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) analysis. V2O5 addition resulted in the formation of glassy phases, which significantly improved the corrosion resistance. These phases were preferentially corroded by the alloy, due to their glassy nature. However, vanadium formed from reduction, formed intermetallic alloys (V–Al–Si–Mg), which formed an interfacial physical barrier to further alloy penetration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号