首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   1篇
一般工业技术   1篇
冶金工业   2篇
  2021年   1篇
  2019年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Measurement Techniques - The metrological characteristics of GET 217–2018, the State Primary Standard of the unit of mass fraction and unit of mass (Molar) concentration of inorganic...  相似文献   
2.
The effect of an electric potential on the formation of a dislocation substructure at the stage of steady-state creep in commercial-purity aluminum is analyzed using the theoretical concepts of steady-state creep and the equations describing a dislocation ensemble with allowance for an applied electric potential. The effect of an electric potential on the creep rate and acceleration is considered through the mechanism of the effect of the potential on the surface energy of aluminum.  相似文献   
3.
4.
Ribosome biogenesis is a highly coordinated and complex process that requires numerous assembly factors that ensure prompt and flawless maturation of ribosomal subunits. Despite the increasing amount of data collected, the exact role of most assembly factors and mechanistic details of their operation remain unclear, mainly due to the shortage of high-resolution structural information. Here, using cryo-electron microscopy, we characterized 30S ribosomal particles isolated from an Escherichia coli strain with a deleted gene for the RbfA factor. The cryo-EM maps for pre-30S subunits were divided into six classes corresponding to consecutive assembly intermediates: from the particles with a completely unresolved head domain and unfolded central pseudoknot to almost mature 30S subunits with well-resolved body, platform, and head domains and partially distorted helix 44. The structures of two predominant 30S intermediates belonging to most populated classes obtained at 2.7 Å resolutions indicate that RbfA acts at two distinctive 30S assembly stages: early formation of the central pseudoknot including folding of the head, and positioning of helix 44 in the decoding center at a later stage. Additionally, it was shown that the formation of the central pseudoknot may promote stabilization of the head domain, likely through the RbfA-dependent maturation of the neck helix 28. An update to the model of factor-dependent 30S maturation is proposed, suggesting that RfbA is involved in most of the subunit assembly process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号