首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
电工技术   1篇
化学工业   9篇
金属工艺   1篇
机械仪表   2篇
建筑科学   1篇
能源动力   3篇
轻工业   7篇
无线电   2篇
一般工业技术   14篇
冶金工业   1篇
自动化技术   7篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   6篇
  2016年   1篇
  2014年   8篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  1998年   1篇
  1996年   1篇
  1984年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
This paper, presents the particle swarm optimization-based fuzzy logic controller (PSO FLC) design for load frequency control in a two-area interconnected hydrothermal power system. Flexible alternating current transmission system devices and energy storage devices are being installed to improve the reliability and stability of the system under dynamic conditions. One such devices namely thyristor-controlled phase shifter (TCPS) is connected in series with the tie-line to damp out the power swings and frequency oscillations. Similarly at the terminal of one control area, a fast acting energy storage device of superconducting magnetic energy storage (SMES) is connected to meet the sudden changes in demand. The existing conventional controllers are unable to provide the satisfactory performance over a wide range of operating conditions due to system nonlinearity and plant parameter variations. To improve the dynamic performance of the system, this work proposes an intelligent tuning approach using a combination of particle swarm optimization (PSO) and fuzzy logic technique. In this work, PSO algorithm is employed for the optimal selection of membership function parameters of the proposed fuzzy PI, TCPS and SMES controllers by minimizing the time domain objective function. The simulation study is performed by the proposed PSO FLC in a two-area interconnected power system. To show the effective performance of the proposed controller, a comparative study has been made with the conventional, genetic algorithm and fuzzy logic-based optimized controller under varying load conditions.  相似文献   
2.
This paper proposed the design of a broadband linear-to-circular reflecting polarizer for X-band applications. The polarizer is designed with three-arm dipole-shaped unit cells with a full ground plane to get wideband performance. The incident linear polarized wave is converted to a right-handed circularly polarized wave upon reflection from the polarizer. The footprint of the unit cell is 9 × 9 mm, which is printed on a FR-4 substrate. Fabricated prototype is measured for its performances like polarization conversion ratio (PCR), fractional bandwidth, and aperture efficiency. The PCR is about 97%, and the fractional bandwidth is 64% with the aperture efficiency of more than 80%. Polarizer performance is analyzed in transverse electric and transverse magnetic modes, and they are stable up to 40° of various incident angles. The polarizer exhibits the 3-dB axial ratio bandwidth from 8 to 12 GHz, which is suitable for satellite applications.  相似文献   
3.
In the present research work, Friction stir processing (FSP) technique has been applied to develop a C70600 graded copper-nickel (CuNi) Surface metal matrix composite (SMMC) reinforced with and without addition of ZrCp. Rotational and traverse speeds were set as 1200 rpm and 30 mm/min, respectively. The fabricated SMMC were metallurgically characterized by using Optical microscope (OM) and Field emission scanning electron microscope (FESEM). The homogeneous distribution of ZrC particles and good interfacial bonding between matrix/reinforcement were observed via OM and FESEM microscopes. The microhardness of the CuNi/ZrC surface composite was observed by using microhardness tester at the cross section of the sample. The average higher microhardness of 148 Hv at CuNi/ZrC SMMC and lower microhardness of 115 Hv at FSPed CuNi was found. The Ultimate tensile strength (UTS) value was measured by using micro tensile testing machine. The UTS value of CuNi/ZrC composite and FSPed CuNi were observed to be 310 MPa and 302 MPa, respectively. The mode of fracture was also observed via FESEM. The X-ray diffraction (XRD) test was carried out to confirm the presence of CuNi & ZrC in the SMMC layer.  相似文献   
4.
The lipid content was extracted from the saga seed by superheated condition and soxhlet apparatus. The mixture of hexane, chloroform and methanol was utilized as a mixed solvent for these extraction operations. Different parameters such as different solvent, temperature, mean particle size and solvent flow have been examined. The optimized lipid extraction was achieved as 26.2 wt% by using superheated condition from the saga seed powder at 90 °C for 120min. Then the fatty acids profile of the optimized Adenanthera pavonina oil were analyzed by gas chromatography. Unsaturated fatty acid was high as 83.7% compared with saturated fatty acid barely 15.4% by relative.  相似文献   
5.
Mass roll‐out of plug‐in hybrid electric vehicles (PHEVs) and significant penetration of renewable energy sources in distribution system play a major role in delivering low carbon environment. However, placing and utilizing these units randomly result in overloading, increased power loss, and reduced voltage profile. This paper responds to these technical challenges by using a strategic placement method for locating the distributed generation (DG) and the charging station (CS) of PHEVs in a multi‐zone distribution system. For simultaneously scheduling of these units in each zone, the smart energy management framework is proposed in this paper. Apart from usual energy management constraints, this paper also incorporates the real‐time constraints involving the capacity of PHEV batteries, the mobility pattern, and the power level of the charging infrastructure. The simulation studies are carried out for each hour of a day. To cope with this time constraint execution, particle swarm optimization algorithm‐based approach is used. The proposed framework is tested in IEEE 33 and IEEE 69 bus radial distribution system. The obtained results imply that the presented energy management framework provides maximum profits for the vehicle owner, and meanwhile it fulfills preferences of the user in each zone simultaneously.  相似文献   
6.
The effectiveness of seven methods for controlling switchover from the filling to packing stage were investigated, including: (1) screw position, (2) injection time, (3) machine pressure, (4) nozzle pressure, (5) runner pressure near the sprue, (6) cavity pressure near the gate, and (7) cavity temperature at the end of flow. The activation threshold for each of the seven switchover methods was iteratively determined so as to produce similar part weights relative to a standard process. A design of experiments was implemented for each of the seven switchover methods that perturbs the process settings by an amount equal to six standard deviations of the standard process so as to replicate the expected long‐term process variation. The results suggest that conventional switchover methods (e.g., screw position) had lower short‐term variation, but other methods were more robust with respect to rejecting long‐term process variation. The merits of different dimensional measurements for quality control are also discussed relative to the society of the plastics industry (SPI) standard tolerances. POLYM. ENG. SCI., 50:2031–2043, 2010. © 2010 Society of Plastics Engineers  相似文献   
7.
Aloe vera (AV) is one of the medicinal herbs with a well-established spectrum of wound healing, antimicrobial and anti-inflammatory property. AV-mediated therapeutics present significant tissue regenerative activity by modulating the inflammatory and proliferative phases of wound healing. The purpose of the present work was to combine the biological properties of AV and the advantages of electrospun meshes to prepare a potent transdermal biomaterial. The polycaprolactone (PCL) containing 5 and 10 wt % of lyophilized powder of AV was studied for electrospinning into nanoscale fiber mats and compared with PCL/Collagen blend for dermal substitutes. SEM revealed the average diameters of PCL, PCL-AV 5 %, PCL-AV 10 % and PCL/Collagen nanofiber scaffolds in the range of 519 ± 28, 264 ± 46, 215 ± 63 and 249 ± 52 nm, respectively. PCL-AV 10 % nanofiber scaffolds showed finer fiber morphology with improved hydrophilic properties and higher tensile strength of 6.28 MPa with a Young’s modulus of 16.11 MPa desirable for skin tissue engineering. The nanofibers were then used to investigate differences in biological responses in terms of proliferation and cell morphology of mice dermal fibroblasts. It was found that PCL-AV 10 % nanofibrous matrix favored cell proliferation compared to other scaffolds which almost increased linearly by (p ≤ 0.01) 17.79 % and (p ≤ 0.01) 21.28 % compared to PCL on sixth and ninth day. CMFDA dye expression, secretion of collagen and F-actin expression were significantly increased in PCL-AV 10 % scaffolds compared to other nanofibrous scaffolds. The obtained results proved that the PCL-AV 10 % nanofibrous scaffold is a potential biomaterial for skin tissue regeneration.  相似文献   
8.
Kumar  T. Satish  Shalini  S.  Priyadharshini  G. Suganya 《SILICON》2021,13(4):1051-1058
Silicon - The effect of thermal treatment on microstructure and tribological behavior of Al-7Si/ZrSiO4 reinforced composites has been investigated. Composites with 5, 10 and 15 vol.% of ZrSiO4...  相似文献   
9.
Heterobinuclear manganese-molybdenum complex with the Schiff base prepared by the condensation of diethylenetriamine with salicylaldehyde yielded a polymeric mixed metal coordination complex with the composition of [Mn1·5MoO3L]. The infrared spectral data indicated the presence of azomethine (HC=N) and Mo=O groups.1H NMR further confirmed the coordination of azomethine nitrogen and absence of phenolic hydrogen. The EPR studies suggested the presence of Mn(II) in the complex. The solid state conductivity studies with the variation of potential and temperature indicated a specific conductivity of 1·6×10−5 ohm−1 cm−1. The activation energy was found to be 0·019 eV. Hall measurements indicate that the material isp-type which is further confirmed by iodine doping which increases the conductivity by two orders of magnitude.  相似文献   
10.
The development and validation of a new software named chemical accident simulation tool (CAST) is presented. CAST enables development of scenarios of different types of accidental fires and explosions that can occur in chemical process industry (CPI). CAST is also capable of assessing the likely consequences of such accidents in terms of the area impacted and the types of impacts. The distinguishing features of CAST are (a) it incorporates a larger set of established models than handled by existing packages to simulate a wider variety of accidents in CPI; (b) it is developed with an integrated mapping tool to display damage zones around accident center; this makes the application useful in decision making; and (c) it calculates the results in a fast and reliable manner. Due to these attributes, CAST has increased efficiency, better understanding of the accident scenarios, and better communication of results. Validation of the software has been done with published results which shows that the codes for calculating the impacts from accidents are correct.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号