首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学工业   3篇
金属工艺   8篇
机械仪表   5篇
石油天然气   2篇
一般工业技术   2篇
  2019年   1篇
  2015年   1篇
  2013年   3篇
  2009年   2篇
  2007年   1篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1979年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
PHYSICS-BASED SIMULATION OF HIGH SPEED MACHINING   总被引:3,自引:0,他引:3  
Computer simulation of high speed machining processes can provide a unique insight and reduce the number of design iterations required to advance and optimize the process. Predictive modeling of high speed machining of exotic materials has been hindered by the nonlinear behavior of this type of materials at extremely high strain, strain rate, and temperatures. This paper presents a physics-based modeling technology that includes the change in the material constitutive equation and the friction characterization at cutting speeds up to 400 m min-1. The dependence of the accuracy of the predicted parameters, such as the chip formation on cutting forces, chip/tool/workpiece interface temperature, stress and strain distributions are also discussed. The fundamentals of metal cutting were utilized to understand the effect of parameter changes in regimes that are outside current empirical knowledge databases.  相似文献   
2.
During the milling operation, the cutting forces will induce vibration on the cutting tool, the workpiece, and the fixtures, which will affect the surface integrity of the final part and consequently the product's quality. In this paper, a generic and improved model is introduced to simultaneously predict the conventional cutting forces along with 3D surface topography during side milling operation. The model incorporates the effects of tool runout, tool deflection, system dynamics, flank face wear, and the tool tilting on the surface roughness. An improved technique to calculate the instantaneous chip thickness is also presented. The model predictions on cutting forces and surface roughness and topography agreed well with experimental results.  相似文献   
3.
The structure effect on corrosion inhibition of two amines and their derivatives is the main object of this article. The first amine was 1,8-diaminooctane and its ethoxylated (50 e.o.) 1,8-diaminooctane and propoxylated (50 p.o.) 1,8-diaminooctane. The second amine is the tetraethylenepentamine and its ethoxylated (50 e.o.) and propoxylated (50 p.o.) derivatives. The investigations were carried out by open circuit potential, potentiodynamic polarization, electrochemical impedance, quantum calculations and SEM measurements. The data obtained for the first amine showed the minimum inhibition efficiency (65.5%), meanwhile the maximum inhibition efficiency was 78.9% for its propoxylated derivative. On the other hand the maximium inhibition efficiency was 91% for the second propoxylated amine. The electronic properties; HOMO and LUMO energy levels, energy gap, dipole moment, polarizability, log P, total energy, charge densities, area/molecule and hydration energy have been calculated. The inhibition efficiency was calculated theoretically using the electronic parameters. From the obtained results, there is a significant difference between the inhibition efficiency of the electronic and the inhibition efficiency experimentally. The results were discussed on the light of the chemical structure of the used inhibitors. In general, the inhibition efficiency is affected by the shape and structure of the molecule.  相似文献   
4.
Optimum process parameters to produce green ceramic complex parts   总被引:1,自引:0,他引:1  
The fragility of green ceramic compacts introduces considerable difficulties during green or bisque machining. This paper demonstrates methods developed to manufacture thin wall-thin floor, complex green ceramic parts to close tolerance. Hybrid finite element (FE)/mechanistic models were utilized in the development of the green machining process. An FE model was used to define cutting edge geometry and machining parameters that would reliably produce crack free parts. Mechanistic model was used to direct cutter path generation of a 5-axis milling machine having a large axial depth of cut, and to prevent edge chipping. The optimized cutter path eliminated any need for hand work before densifying the machined part.  相似文献   
5.
Samples of an acidic cation exchanger have been prepared by sulphonation of acrylonitrile butadiene styrene copolymer previously cross-linked with phenol-formaldehyde resin. The samples having a cation exchange capacity of 3.48 meqg–1, are being introduced as new catalysts in the hydrolysis of ethyl acetate. The synthesized cation exchanger shows good thermal and chemical stability. Hydrolysis rate constants (K r values) for the catalysed reaction have been determined. The efficiency of the resin catalyst,q, is shown to be a function of resin concentration.  相似文献   
6.
A multi-sensor monitoring strategy for detecting tool failure during the milling process is presented. In this strategy, both cutting forces and acoustic emission signals are used to monitor the tool condition. A feature extracting algorithm is developed based on a first order auto-regressive (AR) model for the cutting force signals. This AR(1) model is obtained by using average tooth period and revolution difference methods. Acoustic emission (AE) monitoring indices are developed and used in determining the setting threshold level on-line. This approach was beneficial in minimizing false alarms due to tool runout, cutting transients and variations of cutting conditions. The proposed monitoring system has been verified experimentally by end milling Inconel 718 with whisker reinforced ceramic tools at spindle speeds up to 3000 rpm.  相似文献   
7.
This paper investigates critical issues related to high-speed five-axis milling of hardened D2 tool steel (hardness HRc 63). A forging die cavity was designed to represent the typical features in dies and molds and to simulate several effects resulting from complex tool path generation. Cutting tool materials used were coated carbide for the roughing and semi-finishing processes and polycrystalline cubic boron nitride (PCBN) for the finishing process. The effects of complex tool paths on several critical machining issues such as chip morphology, cutting forces, tool wear mechanisms, tool life and surface integrity were also investigated. The main tool failure mode was chipping due to the machine tool dynamics. A five-axis analytical force model that includes the cutter location (CL) data file for computing the chip load has been developed. The effect of instantaneous tilt angle variation on the forces was also included. Verification of the force model has been performed and adopted as a basis for explaining the difficulties involved with high-speed five-axis milling of D2 tool steel.  相似文献   
8.
Four low molecular weight nonionic polymeric surfactants were prepared by condensing octyl-, dodecyl-, tetradecyl- and hexadecylphenol with para-formaldehyde, and then reacting the resulting resins with ethylene oxide to obtain products with the desired degree of ethoxylation. The molecular weights of the prepared alkylphenol-formaldehyde resins (prior to ethoxylation) were determined by vapour pressure osmometry. The surface tensions of aqueous solutions of these nonionic polymeric surfactants were determined by using the spinning drop method. Plotting the surface tensions obtained versus the logarithm of concentrations resulted in two lines: the pre-CMC (CMC = critical micelle concentration) line (the linear portion below the CMC value) and the post-CMC line (the linear portion above the CMC value). Least squares regression analysis was performed to get the best equation for each of the two lines. Solving these two equations simultaneously resulted in the value of the CMC and the corresponding surface tension (γCMC) for each surfactant of the four polymeric nonionic groups. The CMC values obtained for these polymeric surfactants are of the same order of magnitude obtained for monomeric and other polymeric nonionic surfactants.  相似文献   
9.
Material side flow causes surface damage that has been observed and partly investigated over a period of several years. This paper presents a phenomenological analysis of material side flow in hard turning. First, material side flow is identified, characterized, and its causes classified. Then, the dependence of the material side flow on different process parameters is analyzed using the results of a comprehensive experimental investigation. Tool nose radius, tool wear, and feed are considered as the primary factors that initiate the occurrence of material side flow in finish turning of hardened steel. A new concept for modeling material side flow is then proposed. This model predicts the minimum chip thickness that allows the workpiece material in the vicinity of cutting to plastically flow at the side of the tool, instead of shearing. The value of the minimum chip thickness affects the size of material side flow on the feed marks. Based on the results obtained from the model, the feed and tool nose radius that eliminates/minimizes material side flow in hard turning are specified.  相似文献   
10.
The adsorption behaviour of some ethoxylated alkylphenol–formaldehyde polymeric non-ionic surfactants, at the aqueous solution–air interface, was investigated by measuring the surface tension (γ) as a function of concentration (C) at four temperatures. By applying the Gibbs adsorption equation to the γ versus C data, the adsorption isotherms of these polymeric surfactants were obtained. Surface concentration (Λ) of the investigated polymeric non-ionics was found to increase with decreasing temperature and decreasing hydrophobic group (R) chain length, while varying the length of polyoxyethylene chain (%EO) appeared to have an insigificant effect. Effects of temperature, %EO and chain length R on the surface pressure (π) of the surfactant solutions were also investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号