首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   11篇
化学工业   41篇
金属工艺   1篇
机械仪表   1篇
建筑科学   5篇
能源动力   1篇
轻工业   6篇
无线电   2篇
一般工业技术   38篇
冶金工业   7篇
自动化技术   3篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   10篇
  2016年   1篇
  2015年   2篇
  2014年   6篇
  2013年   19篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1981年   1篇
  1978年   1篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
1.
Nano crystalline pure and Mg doped ceriaparticles were synthesized by simple chemical co-precipitation method using cerium nitrate hexahydrate as a source material and magnesium nitrate as doping precursor at room temperature. The effect of doping were investigated by X-ray diffraction pattern(XRD), FT-Raman,fourier transform infrared spectroscopy(FTIR), Ultraviolet spectroscopy(UV), photoluminescence spectroscopy(PL), field emission scanning electron microscope(FESEM) and high resolution transmission electron microscopy with energy dispersive spectroscopy (HRTEM &EDS). The X-ray diffraction pattern and FT-Raman studies showed that the prepared samples were nano particulates with cubic fluorite structure. The XRD pattern analysis showed that the size of the particles ranged from 13 to 20?nm, however 4?wt% Mg doping results in reduction of particle size compared with other doping concentrations. The effects of Mg concentration on various structural parameters of the prepared samples were also determined. The slight blue shift observed upon doping in UV–Vis absorption region around 330–360nmrecorded for reduction in particle size. The FTIR unveils the presence of Metal oxygen bonds below 700?cm?1in the prepared samples. All samples showed a broad emission band at 430?nm with linearly increasing intensity with respect to dopant concentrations. The Spherical morphology with weak agglomeration was identified through FESEM and HRTEM analysis. The elemental analysis of Ce, O and Mg were confirmed through EDS analysis.  相似文献   
2.
Structurally stable β-Ca3(PO4)2/t-ZrO2 composite mixtures with the aid of Dy3+ stabilizer were accomplished at 1500°C. The precursors comprising Ca2+, P5+, Zr4+, and Dy3+ have been varied to obtain five different combinations. The results revealed the fact that complete phase transformation of calcium-deficient apatite to β-Ca3(PO4)2 occurred only at 1300°C, whereas the evidence of t-ZrO2 crystallization is obvious at 900°C. The dual occupancy of Dy3+ at β-Ca3(PO4)2 and t-ZrO2 structures was evident; however, Dy3+ initially prefers to occupy β-Ca3(PO4)2 lattice until its saturation limit and thereafter accommodates at the lattice site of ZrO2. The typical absorption and emission behavior of Dy3+ were noticed in all the systems and, moreover, the surrounding symmetry of Dy3+ domains has been determined from the luminescence study. All the systems ensured paramagnetic response that is generally contributed by the presence of Dy3+. A gradual increment in the phase content of t-ZrO2 in the composite mixtures ensured a significant improvement in the hardness and Young's modulus of the investigated compositions.  相似文献   
3.
4.
The present study deals with the short-term physicochemical reactions at the interface between bioactive glass particles [55SiO(2)-20CaO-9P(2)O(5)-12Na(2)O-4MgO. mol%] and biological fluid (Dulbecco Modified Eagle's Medium (DMEM)). The physicochemical reactions within the interface are characterized by scanning transmission electron microscopy (TEM) (STEM) associated with Energy-dispersive X-ray spectroscopy (EDXS). Microanalysis of diffusible ions such as sodium, potassium, or oxygen requires a special care. In the present investigation the cryo-technique was adopted as a suitable tool for the specimen preparation and characterization. Cryosectioning is essential for preserving the native distribution of ions so that meaningful information about the local concentrations can be obtained by elemental microanalysis. The bioglass particles immersed in biological fluid for 24 h revealed five reaction stages: (i) dealkalization of the surface by cationic exchange (Na(+), Ca(2+) with H(+) or H(3)O(+)); (ii) loss of soluble silica in the form of Si(OH)(4) to the solution resulting from the breakdown of Si--O--Si bonds (iii); repolymerization of Si(OH)(4) leading to condensation of SiO(2)); (iv) migration of Ca(2+) and PO(4) (3-) to the surface through the SiO(2)-rich layer to form CaO-P(2)O(5) film; (v) crystallization of the amorphous CaO-P(2)O(5) by incorporating OH-- or CO(3) (2-) anions with the formation of three different surface layers on the bioactive glass periphery. The thickness of each layer is approximately 300 nm and from the inner part to the periphery they consist of Si--OH, which permits the diffusion of Ca(2+) and PO(4) (3-) ions and the formation of the middle Ca--P layer, and finally the outer layer composed of Na--O, which acts as an ion exchange layer between Na(+) ions and H(+) or H(3)O(+) from the solution.  相似文献   
5.
Mussel control in cooling water systems is generally achieved by means of chlorination. Chlorine is applied continuously or intermittently, depending on cost and discharge criteria. In this paper, we examined whether mussels will be able to survive intermittent chlorination because of their ability to close their valves during periods of chlorination. Experiments were carried out using three common species of mussels: a freshwater mussel, Dreissena polymorpha, a brackish water mussel, Mytilopsis leucophaeata and a marine mussel, Mytilus edulis. The mussels were subjected to continuous or intermittent (4 h chlorination followed by 4 h no chlorination) chlorination at concentrations varying from 1 to 3 mg l(-1) and their responses (lethal and sublethal) were compared to those of control mussels. In addition, shell valve activity of mussels was monitored using a Mussel-monitor. Data clearly indicate that mussels shut their valves as soon as chlorine is detected in the environment and open only after chlorine dosing is stopped. However, under continuous chlorination mussels are constrained to keep the shell valves shut continuously. The mussels subjected to continuous chlorination at 1 mg l(-1) showed 100% mortality after 588 h (D. polymorpha), 966 h (Mytilus edulis) and 1104 h (Mytilopsis leucophaeata), while those subjected to intermittent chlorination at 1 mg l(-1) showed very little or no mortality during the same periods. Filtration rate, foot activity index and shell valve movement of D. polymorpha, Mytilopsis leucophaeata and Mytilus edulis decreased more than 90% at 1 mg l(-1) chlorine residual when compared to control. However, mussels subjected to intermittent chlorination showed a similar reduction (about 90%) in filtration rate, foot activity index and shell valve movement during chlorination and 3% during breaks in chlorination. The data indicate that intermittent chlorination between 1 and 3 mg l(-1) applied at 4 h on and 4 h off cycle is unlikely to control biofouling if mussels are the dominant fouling organisms.  相似文献   
6.
We report here on an ecologically friendly carbothermal reduction method to realize SrS:Ce phosphor. The method effectively reduces the preparation temperature by 100 °C. The effect of sulfur and charge compensator were studied separately and in combination, on the luminescent properties of SrS:Ce phosphor prepared from SrSO4:Ce(SO4)2·4H2O using this method without inert gas or hazardous gas (H2S) environment. To analyze the role of charge compensator on the luminescent emission property of SrS:Ce, various fluxes, viz., NH4Cl, NaCl were used. The synthesized products were characterized by XRD, photoluminescence emission and excitation spectroscopy (PLE). SrS:Ce showed a bright blue-green emission at 480 and 540 nm corresponding to energy bands originating from 2T2g (5d) to 2F7/2, 2F5/2 (4f) of Ce3+ transitions. The characterization results showed the formation of SrS calcined at 900 °C for 5 h with an increase in blue-green luminescence intensity after the addition of sulfur and charge compensator, separately. When the sulfur and NH4Cl were jointly added, the intensity of blue emission was enhanced, whereas, that of green emission was suppressed. The excitation spectrum showed a fundamental absorption of SrS host crystal lattice at 283 nm and Ce3+ absorption at 430 nm respectively. The CIE (Commission International de’Eclairge) chromaticity coordinates of the phosphor are also reported.  相似文献   
7.
In this present study, a hybrid Chi‐Fe3 O4 was prepared, characterised and evaluated for its antibacterial and antibiofilm potential against Staphylococcus aureus and Staphylococcus marcescens bacterial pathogens. Intense peak around 260 nm in the ultraviolet–visible spectrum specify the formation of magnetite nanoparticles. Spherical‐shaped particles with less agglomeration and particle size distribution of 3.78–46.40 nm were observed using transmission electron microscopy analysis and strong interaction of chitosan with the surface of magnetite nanoparticles was studied using field emission scanning microscopy (FESEM). X‐ray diffraction analysis exhibited the polycrystalline and spinel structure configuration of the nanocomposite. Presence of Fe and O, C and Cl elements were confirmed using energy dispersive X‐ray microanalysis. Fourier transform infrared spectroscopic analysis showed the reduction and formation of Chi‐Fe3 O4 nanocomposite. The antibacterial activity by deformation of the bacterial cell walls on treatment with Chi‐Fe3 O4 nanocomposite and its interaction was visualised using FESEM and the antibiofilm activity was determined using antibiofilm assay. In conclusion, this present study shows the green synthesis of Chi‐Fe3 O4 nanocomposite and evaluation of its antibacterial and antibiofilm potential, proving its significance in medical and biological applicationsInspec keywords: visible spectra, particle size, magnetic particles, nanocomposites, nanoparticles, X‐ray diffraction, nanofabrication, transmission electron microscopy, X‐ray chemical analysis, nanomagnetics, microorganisms, antibacterial activity, iron compounds, ultraviolet spectra, biomedical materials, field emission scanning electron microscopy, Fourier transform infrared spectra, filled polymers, crystal growth from solution, polymer structureOther keywords: potential antibacterial material, antibiofilm potential, magnetite nanoparticles, solvothermal‐assisted green synthesis, hybrid Chi‐Fe3 O4 nanocomposites, staphylococcus aureus, staphylococcus marcescens, bacterial pathogens, ultraviolet–visible spectrum, spherical‐shaped particles, particle size, transmission electron microscopy, FESEM, field emission scanning electron microscopy, X‐ray diffraction, spinel structure, polycrystalline structure, energy dispersive X‐ray microanalysis, Fourier transform infrared spectroscopic analysis, deformation, bacterial cell walls, Fe3 O4   相似文献   
8.
The present study aims to reduce carbon dioxide (CO2) emission from a CI engine using calcite/activated carbon-based post-combustion CO2 capture system fueled with Calophyllum inophyllum biodiesel (B100). The tests were conducted in a two-cylinder CI engine used in tractors at different load conditions. The performance and emission parameters of diesel and B100 with and without calcite and activated carbon-based CO2 capture system were studied. The results show that compared to diesel, CO2 emission increased by 19% for B100 due to high fuel-bound oxygen and carbon. Higher NO emission with a slightly reduced smoke opacity is observed with B100 combustion. CO2 emission is reduced with the CO2 capture system for both diesel and B100. CO2 emission is reduced by 11.5% and 7.3% for diesel with calcite and activated carbon, respectively, and reduced by 15.8% and 10.5% for B100 with calcite and activated carbon. Due to the adsorption capacity of both calcite and activated carbon, NO and smoke opacity are reduced considerably. The results display that calcite is better in reducing CO2 compared to activated carbon-based CO2 capture system. It is perceived that the combination of biofuel and calcite-based CO2 capture system can both reduce engine-out emissions and cause a net negative CO2 emission as it is renewable aiding in mitigation of global warming effects.  相似文献   
9.
Computer-aided diagnosis (CAD) is a computerized way of detecting tumors in MR images. Magnetic resonance imaging (MRI) has been generally used in the diagnosis and detection of pancreatic tumors. In a medical imaging system, soft tissue contrast and noninvasiveness are clear preferences of MRI. Inaccurate detection of tumor and long time consumption are the disadvantages of MRI. Computerized classifiers can greatly renew the diagnosis activity, in terms of both accuracy and time necessity by normal and abnormal images, automatically. This article presents an intelligent, automatic, accurate, and robust method to classify human pancreas MRI images as normal or abnormal in terms of pancreatic tumor. It represents the response of artificial neural network (ANN) and support vector machine (SVM) techniques for pancreatic tumor classification. For this, we extract features from MR images of pancreas using the GLCM method and select the best features using JAFER algorithm. These features are analyzed by five classification techniques: ANN BP, ANN RBF, SVM Linear, SVM Poly, and SVM RBF. We compare the results with benchmark data set of MR brain images. The analytical outcome presents that the two best features used to classify the MR images using ANN BP technique have 98% classification accuracy.  相似文献   
10.
Automobile emissions are composed of NOx and unburned hydrocarbon that contribute significantly to major environmental and health issues. In this study, encapsulated Moringa oleifera beads (EMBs) were synthesized using Moringa oleifera pod powder that was cross-linked with calcium alginate and used as a biosorbent for reducing the emission gas concentrations from the single-cylinder diesel engine. The breakthrough curve was attained from single and double stage of fixed bed column by the influence of temperature ranging from (80°C–120°C) ± 5°C with a feed flow rate varying from 8 to 10 kg hr–1 and bed height varying from 15 to 30 cm. Based on the experimental results, the maximum biosorption capacity (qo) was found to be 14.45 and 123.51 mg g–1 for HC and NOx, respectively, and was obtained at 80°C–90°C with double stage of BH–30cm under flow rate of 8 kg hr–1. Further, breakthrough curves were investigated, and the experimental data were fitted using well-established models like Thomas, Yoon–Nelson, and Wang models. In addition, mass transfer models like Weber–Morris and Boyd were investigated to identify the rate-limiting step of the overall biosorption process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号