首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   687篇
  免费   29篇
  国内免费   6篇
电工技术   11篇
化学工业   173篇
金属工艺   32篇
机械仪表   31篇
建筑科学   3篇
矿业工程   3篇
能源动力   59篇
轻工业   33篇
水利工程   5篇
石油天然气   3篇
无线电   71篇
一般工业技术   159篇
冶金工业   69篇
自动化技术   70篇
  2024年   4篇
  2023年   14篇
  2022年   29篇
  2021年   44篇
  2020年   40篇
  2019年   24篇
  2018年   33篇
  2017年   41篇
  2016年   28篇
  2015年   22篇
  2014年   51篇
  2013年   62篇
  2012年   35篇
  2011年   36篇
  2010年   47篇
  2009年   25篇
  2008年   34篇
  2007年   25篇
  2006年   20篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1983年   1篇
排序方式: 共有722条查询结果,搜索用时 0 毫秒
1.
The erosion-corrsosion behavior of SiC particle-reinforced Al-Si alloy has been studied in NaOH slurry simulating the mining atmosphere. The study was performed at two different sand concentrations, namely, 20 and 30 wt pct, and at a speed of 900 rpm. It is depicted that the wear rates decreased with increasing sand content, indicating that corrosion is the dominating mode of material removal. Further composite exhibited lower wear resistance than the laloys irrespective of the sand concentration. Scanning electron microscope (SEM) observations indicated the dissolution of dendrites of Al due to severe corrosion, leaving behind the network of Si. This ultimately results in the falling of Si particles from the matrix, leaving behind voids. This also results in the formation of voids around the SiC particles and leads to pullout of SiC particles from the matrix during the wear process.  相似文献   
2.
Precise control of the topology of metal nanocrystals and appropriate modulation of the metal–semiconductor heterostructure is an important way to understand the relationship between structure and material properties for plasmon‐induced solar‐to‐chemical energy conversion. Here, a bottom‐up wet chemical approach to synthesize Au/Ni2P heterostructures via Pt‐catalyzed quasi‐epitaxial overgrowth of Ni on Au nanorods (NR) is presented. The structural motif of the Ni2P is controlled using the aspect ratio of the Au NR and the effective micelle concentration of the C16TAB capping agent. Highly ordered Au/Pt/Ni2P nanostructures are employed as the photoelectrocatalytic anode system for water splitting. Electrochemical and ultrafast absorption spectroscopy characterization indicates that the structural motif of the Ni2P (controlled by the outer‐shell deposition of Ni) helps to manipulate hot electron transfer during surface plasmon decay. With optimized Ni2P thickness, Pt‐tipped Au NR with an aspect ratio of 5.2 exhibits a geometric current density of 10 mA cm?2 with an overpotential of 140 mV. The photoanode displays unprecedented long‐term stability with continuous chronoamperometric performance of 50 h at an input potential of 1.5 V with over 30 days. This work provides definitive guidance for designing plasmonic–catalytic nanomaterials for enhanced solar‐to‐chemical energy conversion.  相似文献   
3.
By means of theory and experiments, the application capability of nickel ditelluride (NiTe2) transition‐metal dichalcogenide in catalysis and nanoelectronics is assessed. The Te surface termination forms a TeO2 skin in an oxygen environment. In ambient atmosphere, passivation is achieved in less than 30 min with the TeO2 skin having a thickness of about 7 Å. NiTe2 shows outstanding tolerance to CO exposure and stability in water environment, with subsequent good performance in both hydrogen and oxygen evolution reactions. NiTe2‐based devices consistently demonstrate superb ambient stability over a timescale as long as one month. Specifically, NiTe2 has been implemented in a device that exhibits both superior performance and environmental stability at frequencies above 40 GHz, with possible applications as a receiver beyond the cutoff frequency of a nanotransistor.  相似文献   
4.
We have investigated the 20 nm p-type double gate junctionless tunnel field effect transistor (P-DGJLTFET) and the impact of variation of different device parameters on the performance parameters of the P-DGJLTFET is discussed. We achieved excellent results of different performance parameters by taking the optimized device parameters of the P-DGJLTFET. Together with a high-k dielectric material (TiO2) of 20 nm gate length, the simulation results of the P-DGJLTFET show excellent characteristics with a high IoN of ~ 0.3 mA/μm, a low/OFF of ~ 30 fA/μm, a high ION/IOFF ratio of ~ 1×10^10, a subthreshold slope (SS) point of ~ 23 mV/decade, and an average SS of ~ 49 mV/decade at a supply voltage of -1 V and at room temperature, which indicates that PDGJLTFET is a promising candidate for sub-22 nm technology nodes in the implementation of integrated circuits.  相似文献   
5.
Thin films of PbSe having both nano- and microstructures have been deposited on transparent conducting oxide (TCO)-coated glass substrates electrochemically, from an aqueous solution of Pb(OAc)2, ethylenediamine tetraacetic acid (EDTA), and SeO2. A Pb strip acted as the sacrificial anode, while the TCO glass was the cathode. No external bias was applied. The formation of PbSe was pH sensitive, and pH ~3 was found to be optimum for film deposition. Films grown at room temperature (25°C) were nanocrystalline (~25 nm), while those deposited at 80°C were microcrystalline (~150 nm). Films were characterized by x-ray diffraction studies, field-emission scanning electron microscope image analysis, infrared spectral analysis, and by both alternating-current (a.c.) and direct-current (d.c.) electrical measurements. A blue-shift was observed for the nanocrystalline films. Film resistivity and junction properties were obtained from electrical measurements.  相似文献   
6.
Multiple-input multiple-output (MIMO) wireless systems can achieve significant diversity and array gain by using transmit beamforming and receive combining techniques. In the absence of full channel knowledge at the transmitter, the transmit beamforming vector can be quantized at the receiver and sent to the transmitter using a low-rate feedback channel. In the literature, quantization algorithms for the beamforming vector are designed and optimized for a particular channel distribution, commonly the uncorrelated Rayleigh distribution. When the channel is not uncorrelated Rayleigh, however, these quantization strategies result in a degradation of the receive signal-to-noise ratio (SNR). In this paper, switched codebook quantization is proposed where the codebook is dynamically chosen based on the channel distribution. The codebook adaptation enables the quantization to exploit the spatial and temporal correlation inherent in the channel. The convergence properties of the codebook selection algorithm are studied assuming a block-stationary model for the channel. In the case of a nonstationary channel, it is shown using simulations that the selected codebook tracks the distribution of the channel resulting in improvements in SNR. Simulation results show that in the case of correlated channels, the SNR performance of the link can be significantly improved by adaptation, compared with nonadaptive quantization strategies designed for uncorrelated Rayleigh-fading channels  相似文献   
7.
An MMIC transmitter for high-volume smart munition applications in Ka band is developed using 0.25 μm MESFET technology. The transmitter, consisting of a voltage-controlled oscillator (VCO) and power amplifier (PA), delivers more than 100 mW of power with an overall efficiency of 10% and a linear tuning range of more than 700 MHz around 35 GHz  相似文献   
8.
In this paper, we propose a distributed topology management algorithm, named T‐Must, which orchestrates coalition formation game between camera and scalar sensor (SS) nodes, for use in wireless multimedia sensor networks. In the proposed solution, connectivity among the peer camera sensor (CS) nodes is maintained, and coverage is ensured between them. Only the scalar data are not sufficient to describe an event in a particular monitored area. In many cases, multimedia data (specifically, video data) are required to provide more precise information about the event. As the CS nodes, which sense and transmit multimedia data, are costlier than the SS nodes, the former are deployed in the monitored area in lesser numbers compared to the latter ones. In case of CS nodes, power consumption due to sensing is also significant, similar to power consumption for the transmission and reception of packets. Therefore, in this work, in order to increase the network lifetime, topology is controlled by forming coalition between the CS and SS nodes. Upon occurrence of an event, the SS nodes send scalar data to their associated CS nodes. If the scalar data received from SS nodes cross a preconfigured threshold, the associated CS node in the coalition starts sensing the event, captures the video data, and forwards the video data toward other coalitions or sink. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
Two novel bipolar host materials (CBzIm and COxaPh) comprising of a hole-transport (HT) carbazole core functionalized with electron-transport (ET) moieties (benzimidazole/oxadiazole) at C3 and C6 positions have been synthesized. Their thermal, photophysical, electrochemical properties, and carrier mobilities were characterized. Theoretical calculations revealed that the HOMO orbitals were generally delocalized over the hole- and electron-transport moieties for both CBzIm and COxaPh, whereas the LUMO orbitals distribution only involved one benzimidazole moiety in CBzIm instead of fully delocalization over the whole polar moieties for COxaPh, which is consistent with the observation of good hole mobilities for both hosts and better electron mobility for COxaPh over CBzIm. CBzIm with high ET (2.76 eV) is suitable to serve as a blue phosphor host, where a sky blue phosphor (DFPPM)2Irpic exhibiting superior properties than those of popular blue emitter FIrpic was used to give highly efficient phosphorescent OLEDs, achieving a maximum external quantum efficiency (ηext) of 15.7%. The better π-delocalization of COxaPh led to a lower triplet energy (ET = 2.65 eV), which can be used to accommodate green and red phosphors, providing excellent device performance with ηext as high as 17.7% for green [(ppy)2Ir(acac)] and 20.6% for red [Os(bpftz)2(PPh2Me)2], respectively.  相似文献   
10.
Non-sticking droplets wrapped with fine hydrophobic particles, namely liquid marbles, can be transported both on solid and water pool without an undesired spill of the inner encapsulated liquid. While the stimuli-responsive release of the inner liquid in the target area is proposed, the time-programmed release is not yet achieved. Herein, the hydrophobicity of nanoclay is modulated via a catalyst-free 1,4-conjugate addition reaction to form liquid marbles. This nanoclay liquid marble is robust and stable in air but collapses on the liquid pool with a specific lifetime. The lifetime of the liquid marble can be modulated over seconds to hours scale depending on the selection of chemically modulated wettability of the nanoclay. The critical mechanism of lifetime modulation is responsible for controlling the coalescence kinetics between the water pool and inner liquid by nanoclays’ high diffusion length and chemically varied water spreading potential. The NC liquid marble's programmable lifetime to ‘time-bomb’ type drug release and cascade chemical reaction is applied—without requiring any external intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号