首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
无线电   1篇
一般工业技术   5篇
  2021年   1篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Low-temperature vacuum deposition instead of the commonly used vacuum deposition at high substrate temperatures has been applied to prepare new window material CdS thin films. The structural, optical and electrical properties of vacuum-evaporated CdS thin films were investigated as a function of substrate temperature (100–300 K) and the post-deposition annealing temperature (at 473, 573 and 673 K). It was determined that films deposited at all substrate temperatures were polycrystalline in nature with hexagonal structure and a strong (0 0 2) texture. The AFM and SEM studies showed that the microstructures of the as-deposited films agreed with the expectations from structure zone model. X-ray diffraction studies showed that the crystallinity of the CdS films was improved on annealing. Optical spectroscopy results of the films indicated that the optical band gap value increased from 2.40 to 2.42 eV with decreased substrate temperature. Increasing the annealing temperature sharpened the band edge. The dark resistivity increased from 4.5×103 to 7.3×103 Ω cm and the carrier concentration decreased from 4.7×1017 to 3.5×1015 cm−3 as the substrate temperature decreased from 300 to 100 K.  相似文献   
2.
CdS thin films were deposited by vacuum deposition method at low substrate temperatures instead of the commonly used vacuum deposition at high substrate temperatures (TS > 300 K). The effect of low substrate temperature on the current transport mechanisms in polycrystalline CdS thin films has been studied as a function of temperature over the temperature range 100-300 K. Both thermally assisted tunneling of carriers through and thermionic emission over the grain boundary potential have contributions to the conduction in the range 250-300 K for the sample prepared at 300 K substrate temperature. The dominant conduction mechanism of the samples prepared at 200 K and 100 K is determined as thermionic emission over 200 K and Mott's hopping process below 200 K. The Mott's hopping process is not applicable for the sample prepared at 300 K.  相似文献   
3.
This paper reports the investigation of physical properties of CdS:Ga thin films grown for the first time by a simple spray pyrolysis method as a function of Ga-doping level from 0 to 8 at.%. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive photoelectron spectroscopy, transmittance, photoluminescence, Hall effect and resistivity measurements are utilized to search for the structural, morphological, chemical, optical and electrical properties of as-prepared samples. XRD data confirm the presence of hexagonal structure with a strong (101) preferred orientation. SEM results show that the surface morphology varies significantly via Ga-doping, particularly 6 at.% doping level. Optical transparency is improved by the lower Ga-doping (2 and 4 at.%) whereas higher doping concentration (6 and 8 at.%) causes a poor transmission in the visible region. With respect to CdS (2.42 eV), the calculated band gap values at first enhances for 2 at.% Ga-doping and reaches to 2.43 eV. But, further increase in Ga-doping amount leads to a drop in the band gap value (2.39 eV) for 8 at.% Ga-doping. Electrical analyses display that 2 at.% Ga-doped CdS thin films exhibit a maximum carrier density and a minimum resistivity that are related to the substitutional incorporation of Ga3+ ions at Cd2+ ions. However, higher doping of Ga atoms into CdS gives rise to a gradual diminish in the carrier concentration and a rise in the resistivity. Based on all the data, it should be concluded that 2 at.% Ga-doped CdS thin films exhibit the best optical and electrical properties that can be used in the optoelectronic applications.  相似文献   
4.

In this study, Cu2SnS3 (CTS) thin films prepared by a two-step sulfurization process were characterized. Cu and Sn metallic layers were first deposited on glass substrates by sputtering and then annealed in-situ while in the sputtering chamber to obtain CuSn (CT) alloys. This was followed by a pre-treatment step at temperatures between 200 and 350 °C in presence of S vapors. Finally, a full sulfurization step was performed at 525 °C to obtain the desired CTS phase. CTS films were characterized using EDX, XRD, Raman spectroscopy, SEM, optical transmission and Van der Pauw methods. It was found that all CTS samples had Cu-poor chemical composition. XRD data revealed only diffraction peaks belonging to CTS structure after the full sulfurization step. Raman spectra of the samples showed that except for the CTS sample pre-treated at 250 °C (CTS-250), which displayed the tetragonal crystal system, the films were dominated by the monoclinic structure. SEM surface images showed dense and polycrystalline microstructure, CTS-200 sample exhibiting a more uniform morphology. Optical band gap values were found to be ranging from 0.92 to 1.19 eV. All samples showed p-type conductivity but the sample pre-treated at 350 °C had higher resistivity and lower carrier concentration values. Overall, the CTS layer prepared using the pre-treatment step at 200 °C exhibited more promising structural and optical properties for potential photovoltaic applications. This work demonstrated that it is possible to change the crystal structure of sulfurized CTS thin films through a pre-treatment step.

  相似文献   
5.
6.
Undoped and 2, 4 and 6 at.% Mg-doped ZnO nanorods were successfully deposited on ZnO seeded fluorine tin oxide substrates by a simple chemical bath deposition technique to form a photoanode. It was seen that all the samples had a hexagonal wurtzite structure with compact rod morphology. From Tauc’s plot results, as compared to the undoped one (3.26 eV), the optical band gap of the ZnO:Mg samples increased to 3.32 eV for 4 at.% Mg-doping concentration and then decreased to 3.27 eV for 6 at.% Mg-doping. Photoluminescence results measured at 300 K indicated that ZnO nanorods had a ultra-violet peak with a wavelength of 382 nm, a blue peak at 420 nm and a deep level band in the range of 450–800 nm. Undoped and Mg-doped ZnO nanorods were subsequently used to realize ZnO-based dye-synthesized solar cells which exhibited the best power conversion efficiency of 0.144 % for 4 at.% ZnO:Mg sample.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号