首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
无线电   2篇
一般工业技术   3篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Zhang  Zhi-Cheng  Li  Yi  Wang  Jing-Jing  Qi  De-Han  Yao  Bin-Wei  Yu  Mei-Xi  Chen  Xu-Dong  Lu  Tong-Bu 《Nano Research》2021,14(12):4591-4600

Graphdiyne (GDY) is emerging as a promising material for various applications owing to its unique structure and fascinating properties. However, the application of GDY in electronics and optoelectronics are still in its infancy, primarily owing to the huge challenge in the synthesis of large-area and uniform GDY film for scalable applications. Here a modified van der Waals epitaxy strategy is proposed to synthesize wafer-scale GDY film with high uniformity and controllable thickness directly on graphene (Gr) surface, providing an ideal platform to construct large-scale GDY/Gr-based optoelectronic synapse array. Essential synaptic behaviors have been realized, and the linear and symmetric conductance-update characteristics facilitate the implementation of neuromorphic computing for image recognition with high accuracy and strong fault tolerance. Logic functions including “NAND” and “NOR” are integrated into the synapse which can be executed in an optical pathway. Moreover, a visible information sensing-memory-processing system is constructed to execute real-time image acquisition, in situ image memorization and distinction tasks, avoiding the time latency and energy consumption caused by data conversion and transmission in conventional visual systems. These results highlight the potential of GDY in applications of neuromorphic computing and artificial visual systems.

  相似文献   
2.
Artificial synapses are the key building blocks for low-power neuromorphic computing that can go beyond the constraints of von Neumann architecture. In comparison with two-terminal memristors and three-terminal transistors with filament-formation and charge-trapping mechanisms, emerging electrolyte-gated transistors (EGTs) have been demonstrated as a promising candidate for neuromorphic applications due to their prominent analog switching performance. Here, a novel graphdiyne (GDY)/MoS2-based EGT is proposed, where an ion-storage layer (GDY) is adopted to EGTs for the first time. Benefitting from this Li-ion-storage layer, the GDY/MoS2-based EGT features a robust stability (variation < 1% for over 2000 cycles), an ultralow energy consumption (50 aJ µm−2), and long retention characteristics (>104 s). In addition, a quasi-linear conductance update with low noise (1.3%), an ultrahigh Gmax/Gmin ratio (103), and an ultralow readout conductance (<10 nS) have been demonstrated by this device, enabling the implementation of the neuromorphic computing with near-ideal accuracies. Moreover, the non-volatile characteristics of the GDY/MoS2-based EGT enable it to demonstrate logic-in-memory functions, which can execute logic processing and store logic results in a single device. These results highlight the potential of the GDY/MoS2-based EGT for next-generation low-power electronics beyond von Neumann architecture.  相似文献   
3.
Memory plays a vital role in modern information society. High-speed and low-power nonvolatile memory is urgently demanded in the era of big data. However, ultrafast nonvolatile memory with nanosecond-timescale operation speed and long-term retention is still unavailable. Herein, an ultrafast nonvolatile memory based on van der Waals heterostructure is proposed, where a charge-trapping material, graphdiyne (GDY), serves as the charge-trapping layer. With the band-engineered heterostructure and excellent charge-trapping capability of GDY, charges are directly injected into the GDY layer and are persistently captured by the trapping sites in GDY, which result in an ultrafast writing speed (8 ns), a low operation voltage (30 mV), and a long retention time (over 104 s). Moreover, a high on/off ratio of 106 is demonstrated by this memory, which enables the achievement of multibit storage with 6 discrete storage levels. This device fills the blank of ultrafast nonvolatile memory technology, which makes it a promising candidate for next-generation high-speed and low-power-consumption nonvolatile memory.  相似文献   
4.
Facile synthesis of photocatalysts with highly dispersed metal centers is a high-priority target yet still a significant challenge.In this work,a series of Co-C3N4 photocatalysts with different Co contents atomically dispersed on g-CaN4 have been prepared via one-step thermal treatment of cobalt-based metal-organic frameworks(MOFs)and urea in the air.Thanks to the highly dispersed and rich exposed Co sites,as well as good charge separation efficiency and abundant mesopores,the optimal 25-Co-C3N4,in the absence of noble metal catalysts/sensitizers,exhibits excellent performance for photocatalytic C02 reduction to CO under visible.light irradiation,with a high CO evolution rate of 394.4μmol·g-1·h-1,over 80 times higher than that of pure g-C3N4(4.9μmol·g-1·h-1).In:addition,by this facile synthesis strategy,the atomically dispersed Fe and Mn anchoring on g-C3N4(Fe-C3N4 and Mn-C3N4)have been also obtained,indicating the reliability and universality of this strategy in synthesizing photocatalysts with highly dispersed metal centers.This work paves a new way to develop cost-effective photocatalysts for photocatalytic C02 reduction.  相似文献   
5.
Artificial photosynthesis for CO2 reduction coupled with water oxidation currently suffers from low efficiency due to inadequate interfacial charge separation of conventional Z-scheme heterojunctions. Herein, an unprecedented nanoscale Janus Z-scheme heterojunction of CsPbBr3/TiOx is constructed for photocatalytic CO2 reduction. Benefitting from the short carrier transport distance and direct contact interface, CsPbBr3/TiOx exhibits significantly accelerated interfacial charge transfer between CsPbBr3 and TiOx (8.90 × 108 s−1) compared with CsPbBr3:TiOx counterpart (4.87 × 107 s−1) prepared by traditional electrostatic self-assembling. The electron consumption rate of cobalt doped CsPbBr3/TiOx can reach as high as 405.2 ± 5.6 µmol g−1 h−1 for photocatalytic CO2 reduction to CO coupled with H2O oxidation to O2 under AM1.5 sunlight (100 mW cm−2), over 11-fold higher than that of CsPbBr3:TiOx, and surpassing the reported halide-perovskite-based photocatalysts under similar conditions. This work provides a novel strategy to boost charge transfer of photocatalysts for enhancing the performance of artificial photosynthesis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号