首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   8篇
  国内免费   1篇
电工技术   7篇
化学工业   51篇
金属工艺   3篇
机械仪表   20篇
建筑科学   7篇
能源动力   11篇
轻工业   12篇
水利工程   2篇
无线电   10篇
一般工业技术   41篇
冶金工业   6篇
原子能技术   7篇
自动化技术   34篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2016年   6篇
  2015年   7篇
  2014年   3篇
  2013年   17篇
  2012年   10篇
  2011年   16篇
  2010年   9篇
  2009年   10篇
  2008年   13篇
  2007年   16篇
  2006年   9篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2001年   7篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有211条查询结果,搜索用时 11 毫秒
1.
The fourth-generation nickel-based single-crystal superalloys, which contain large amounts of refractory metals for strengthening and platinum group metals for topologically close-packed phase prevention, show excellent high-temperature strength. However, these alloying elements seem to decrease high-temperature oxidation resistance. In this study, nickel-based superalloys with various amounts of tantalum, rhenium, and ruthenium were examined in isothermal and cyclic exposures at 1,100°C to investigate the effect on the oxide growth rate and resistance to scale spallation. Ruthenium and rhenium were found to degrade the oxidation resistance by the vaporization of their oxide. Tantalum-rich oxide in the spinel layer acts to stabilize ruthenium and rhenium oxide in the scale. The addition of hafnium and yttrium is effective in improving the oxidation resistance of ruthenium-containing nickel-based superalloys.  相似文献   
2.
Mesoporous Au films consisting of a network of interconnected Au ligaments around ultra-large pores were found to exhibit a promising electrocatalytic activity towards sluggish reactions. Mesoporous Au films with pore sizes up to 25 nm were successfully fabricated using a polymeric micelle approach. A superior catalytic activity of the mesoporous Au films towards methanol oxidation was confirmed, which was thoroughly analyzed and compared with that of other Au materials. An intrinsic investigation on the high catalytic activity revealed that the superior performance of the as-prepared mesoporous Au film was related to its unique atomic structures around the mesopores with well-crystallized facets and several step/kink sites on the Au surfaces. These findings showcase a strategic and feasible design for preparing highly active Au-based catalysts that could be used as promising candidates in electrocatalytic applications.
  相似文献   
3.
This study clarifies the absorption behavior of micro-droplets of water on treated paper to support the design of functional microstructures, such as electronics and micro-fluid channels, on paper. The period of time between when a micro-droplet of water ejected from an ink-jet head lands on the paper’s surface and its complete disappearance by absorption was defined as the micro-sizing degree (MSD), and an MSD measurement method was established. The MSD was evaluated using microscopic high-speed video images of the side view recorded every millisecond. Several grades of commercially available ink-jet paper media and laboratory sheets having different levels of water repellency prepared from a pulp and a sizing agent were examined. The MSD of commercial ink-jet papers, which are known to absorb water very quickly, was 3–6 ms. Weakly sized laboratory sheets exhibited a lower MSD of 2–3 ms. The absorption behavior was analyzed in terms of the capillary pressure with and without the Laplace pressure; the theoretical and experimental results agreed moderately well. The results indicated that the Laplace pressure cannot be neglected in the analysis. The MSD of a wet surface where a preceding micro-droplet had already landed was higher than that on a dry or partially wet surface, presumably because water remains inside pores for an unexpectedly long time.  相似文献   
4.
Parkinson’s disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer’s disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.  相似文献   
5.
An HPLC method with fluorescence detection was developed for the determination of propyl gallate, nordihydroguaiaretic acid, butylated hydroxyanisole (2- and 3-tert-butyl-4-hydroxyanisole), tert-butylhydroquinone and octyl gallate in edible oils and foods. The antioxidants in edible oil were isolated directly with acetonitrile saturated with n-hexane. The antioxidants in food were extracted with ethyl acetate and the extract was concentrated under vacuum. They were isolated from the residue with acetonitrile saturated with n-hexane. The acetonitrile layer was centrifuged at 5,000 rpm for 10 min. The HPLC separation was performed on a Symmetry C18 column (3.5 microns, 4.6 mm i.d. x 150 mm) using a mixture of 5% acetic acid-acetonitrile-methanol (4:3:3, v/v/v) as the mobile phase and monitored by using a fluorescence detector with time programming. Sample peaks were identified by comparison of the fluorescence spectra with those of antioxidant standards. Average recoveries of fortified antioxidants at 100 micrograms/g were 72.1-99.6%. Coefficients of variation were 0.7-7.2%.  相似文献   
6.
A perpendicular mesoporous platinum film is used as a model electrode to clarify the effectiveness of catalysts inside agglomerates of fuel cell catalyst layers on the basis of experimental facts. The analysis clarifies that: (i) Pt surface even apart from Nafion ionomer phase can be electrochemically active; (ii) its response is different from that of the surface covered with ionomer; and (iii) ionic resistance in pores filled with pure water is too high (ca. 0.18 MΩ cm) for fuel cell reactions to smoothly occur. We conclude that such catalysts in pores filled with pure water are ineffective for fuel cell reactions due to the high ionic resistance, though their catalytic activity is possibly higher than that of the catalysts covered with Nafion.  相似文献   
7.
8.
Catalyst layers of direct methanol fuel cells (DMFCs) are modified by in situ electropolymerization of m-aminobenzenesulfonic acid. By using electrochemical impedance spectroscopy and porosimetry, this modification is found to add polymer electrolyte into primary pores (<10 nm), where ionic resistance is high for lack of polymer electrolyte (i.e., Nafion), and the additional electrolyte successfully decreases the ionic resistance by 10-15% compared to the plain carbon surface with a slight ion-conductivity (>40 kΩ cm). In view of methanol oxidation characteristics, this modification decreases the resistance by ca. 25% (from 5.1 Ω cm2 to 3.7 Ω cm2) at 0.6 V vs. DHE, resulting in the increase in the cell voltage of DMFC test by ca. 20 mV. The clear relation between the performance and the microstructures is concluded to be helpful to understand the performance of fuel cell electrodes in detail.  相似文献   
9.
Abstract— The sustain pulse voltage of a panel for 66‐kPa Ne + Xe (5–30%) with an (SrCa)O protective layer is 20–40% lower than that with an MgO protective layer. The luminous efficiency of the panel with a Ne + Xe (30%) (SrCa)O protective layer is 1.5 times that of the conventional panel with a Ne + Xe (10%) MgO protective layer; the sustain pulse voltages of these panels are almost the same. The power loss caused by panel capacitance is proportional to the second power of the sustain pulse voltage. Using the (SrCa)O protective layer for Xe (5–30%), the power loss is reduced by 35–60% compared with the MgO protective layer. It follows that, using the (SrCa)O protective layer, we can increase the Xe content with little power loss and thus achieve high‐efficiency PDPs. As for MgO and CaO with Xe ions, electrons are probably ejected from only the defect states. On the other hand, as for the SrO with Xe ions, it is likely that electrons can be ejected from not only defect states but also the valance band. This seems to be the reason why the driving voltage is lower with the (SrCa)O protective layer than with the MgO protective layer.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号