首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学工业   3篇
能源动力   2篇
一般工业技术   10篇
冶金工业   4篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1989年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
It is well known that the production of phosphoric fertilizers by traditional methods is connected with certain environmental problems, particularly related to use of acids during the decomposition of natural phosphates. A basic problem is also the fact that only 15 – 20% of the phosphorus contained in superphosphates is assimilated by plants.The development of methods to process natural phosphates without acid precipitation has potential advantages and in this respect biotechnological processing of natural phosphates in order to obtain organo-mineral fertilizers is very promising. The possibility of bioconverting the phosphorus of natural phosphates by usingAspergillus niger fungi through their deep incubation has been investigated. The investigations aim to achieve a high degree of P2O5 extraction from the phosphates with conversion from a non-utilizable to a utilizable form. The influence of the fungal strain, the kind of nutritive medium and the time of incubation of the process of biological mobilization of the phosphate rock is examined.It was established that the time of incubation, the kind of micro-organisms of theAspergillus niger group, as well as the kind of nutritive medium, influence significantly the process of bioconversion and the conversion of phosphorus from non-utilizable to water-soluble and utilizable for plants form. A maximum degree 90% of phosphorus extraction in the form of water-soluble and citrate-soluble has been reached for 10-day incubation. Physicochemical examinations have been carried out and they have proved that, as a result of the produced organic acids, a process of decomposition of the initial Tunisian phosphorite takes place.  相似文献   
2.
The cell cycle is implicated in diseases that are the leading cause of mortality and morbidity in the developed world. Until recently, the search for drug targets has focused on relatively small parts of the regulatory network under the assumption that key events can be controlled by targeting single pathways. This is valid provided the impact of couplings to the wider scale context of the network can be ignored. The resulting depth of study has revealed many new insights; however, these have been won at the expense of breadth and a proper understanding of the consequences of links between the different parts of the network. Since it is now becoming clear that these early assumptions may not hold and successful treatments are likely to employ drugs that simultaneously target a number of different sites in the regulatory network, it is timely to redress this imbalance. However, the substantial increase in complexity presents new challenges and necessitates parallel theoretical and experimental approaches. We review the current status of theoretical models for the cell cycle in light of these new challenges. Many of the existing approaches are not sufficiently comprehensive to simultaneously incorporate the required extent of couplings. Where more appropriate levels of complexity are incorporated, the models are difficult to link directly to currently available data. Further progress requires a better integration of experiment and theory. New kinds of data are required that are quantitative, have a higher temporal resolution and that allow simultaneous quantitative comparison of the concentration of larger numbers of different proteins. More comprehensive models are required and must accommodate not only substantial uncertainties in the structure and kinetic parameters of the networks, but also high levels of ignorance. The most recent results relating network complexity to robustness of the dynamics provide clues that suggest progress is possible.  相似文献   
3.
We review recent experiments in which superfluid $^3$ He has been studied under highly controlled confinement in nanofluidic sample chambers. We discuss the experimental challenges and their resolution. These methods open the way to a systematic investigation of the superfluidity of $^3$ He films, and the surface and edge excitations of topological superfluids.  相似文献   
4.
In a previous paper we described the experiments and the framework of a model for the exchange of monooleoylphosphatidylcholine with a single egg phosphatidylcholine membrane. In the present paper a model is presented that relates the experimentally measured apparent characteristics of the overall kinetics of lysolipid exchange to the true rates of lysolipid exchange and interbilayer transfer. It is shown that the adsorption of the lysolipid follows two pathways: one through the adsorption of lipid monomers and other through the fusion of micelles. The desorption of lysolipid follows a single pathway, namely, the desorption of monomers. The overall rate of fast desorption under convective flow conditions gives the true rate of monomer desorption from the outer membrane monolayer. The overall rate of both slow lysolipid uptake and slow desorption gives the rate of interbilayer transfer. Because of the uneven distribution of lysolipid between the two monolayers during its uptake, one of the membrane monolayers is apparently extended relative to the other. This relative extension of one of the monolayers induces a monolayer tension. The induced monolayer tension can increase up to 7 mN.m-1, when most of the intercalated lysolipid only partitions into the monolayer facing the lysolipid solution. This value is similar to the measured value for the critical monolayer tension of membrane failure, which is on the order of 5 mN.m-1. The similarity of the magnitudes of the induced monolayer tension during monooleoylphosphatidylcholine exchange and the monolayer tension of membrane failure suggests that the interbilayer lipid transfer may be affected by the formation of short living membrane defects. Furthermore, the pH-induced interbilayer exchange of phosphatidylglycerol is considered. In this case, it is shown that the rate of interbilayer transfer is a function of the phosphatidylglycerol concentration in the membrane.  相似文献   
5.
The present study describes an enhancement of the photoluminescence of CdSe quantum dots under long-term ultraviolet irradiation in organic solvents. The photoenhancement effect followed multiexponential kinetics and was found to depend on several factors: intensity of ultraviolet light, polarity of the solvent, presence of capping agents on the nanocrystal surface, and presence of free Cd and Se ions in the solution. High intensity ultraviolet irradiation provoked a rapid enhancement of the photoluminescence of CdSe nanocrystals, reaching the maximum with subsequent photoluminescence decay. Low-intensity ultraviolet irradiation provoked a comparatively slow enhancement of the photoluminescence of CdSe nanocrystals, reaching saturation after 5-6 hours of irradiation in organic solvents (butanol and chloroform). The photoenhancement effect was reversible or irreversible depending on the additional ingredients. The role of free Cd and Se in these processes was clarified. The results are discussed in the context of ultraviolet induced liberation of free Cd and Se ions from the nanocrystal surface and their hypothetical reversible deposition with trapping of the surface holes and influencing the efficiency of radiative versus nonradiative exciton decay during the enhancement of photoluminescence.  相似文献   
6.
In the present study, we describe the synthesis of highly luminescent uncoated water-soluble CdSe quantum dots (QDs) possessing the following characteristics: approximately 2 nm in diameter, with very good size distribution (in 95% homodispersed) accompanied by a broad-band photoluminescent spectrum. The synthetic procedure is simple, is conducted at room temperature, in the absence of the most popular coordinating ligands (as TOPO or HDA), and is highly reproducible. The obtained CdSe core QDs possessed a comparatively long fluorescence half-life (approximately 30-90 ns, depending on the emission wavelength) detected by time-resolved spectroscopy. These QDs were further conjugated with antibodies and applied in several biochemical analyses.  相似文献   
7.
The present study describes a stabilization of single quantum dot (QD) micelles by a "hydrophobic" silica precursor and an extension of a silica layer to form a silica shell around the micelle using "amphiphilic" and "hydrophilic" silica precursors. The obtained product consists of approximately 92% single nanocrystals (CdSe, CdSe/ZnS, or CdSe/ZnSe/ZnS QDs) into the silica micelles, coated with a silica shell. The thickness of the silica shell varies, starting from 3-4 nm. Increasing the shell thickness increases the photoluminescence characteristics of QDs in an aqueous solution. The silica-shelled single CdSe/ZnS QD micelles possess a comparatively high quantum yield in an aqueous solution, a controlled small size, sharp photoluminescence spectra (fwhm approximately 30 nm), an absence of aggregation, and a high transparency. The surface of the nanoparticles is amino-functionalized and ready for conjugation. A comparatively good biocompatibility is demonstrated. The nanoparticles show ability for intracellular delivery and are noncytotoxic during long-term incubation with viable cells in the absence of light exposure, which makes them appropriate for cell tracing and drug delivery. The presence of the hydrophobic layer between the QD and silica-shell ensures an incorporation of other hydrophobic molecules with interesting properties (e.g., hydrophobic paramagnetic substances, hydrophobic photosensitizers, membrane stabilizers, lipid-soluble antioxidants or prooxidants, other hydrophobic organic dyes, etc.) in the close proximity of the nanocrystal. Thus, it is possible to combine the characteristics of hybrid materials with the priority of small size. The silica-shelled single QD micelles are considered as a basis for fabrication of novel hybrid nanomaterials for industrial and life science applications, for example, nanobioprobes with dual modality for simultaneous application in different imaging techniques (e.g., fluorescent imaging and functional magnetic resonance imaging).  相似文献   
8.
A small portion of a reaction mixture including unpurified CdX (X = Se or Te) quantum dots (QDs), in which unreacted Cd and Se ions were left together with coordinating solvents, was dropped into an organic solvent. The CdX QDs in this organic solution showed enhancement of photoluminescence (PL) efficiency, growth of particles, and focusing of size distribution for more than 10 h at room temperature (RT, -23 degrees C). These effects were attributed to passivation of QDs' surface by Cd and X ions present in the solution. No external energy source was used for these achievements; therefore, the process is termed as self-surface passivation. The self-surface passivation was reproduced using purified CdX QDs with additional Cd and X ions in an organic solvent. The self-surface passivation method was applied to RT-synthesized CdSe QDs, which is characterized by a broad PL spectrum (fwhm - 150 nm) for monodispersed QDs, to modify their emission characteristics. On self-surface passivation, the broad PL spectrum was narrowed (fwhm - 35 nm) and the QDs were grown. The X-ray diffraction measurements of RT-synthesized CdSe QDs and that subsequently aged in 1-butanol showed that crystallinity of the samples was improved on aging.  相似文献   
9.
1nvest.igation of flow pattern in a cocurrent disk spray dryer by means of measurement, of the kernel function is described. The obtained measurement results not only inform on the air flow type but ran be directly applied as input in the integral equation based simulation of heat and mass transfer.  相似文献   
10.
1nvest.igation of flow pattern in a cocurrent disk spray dryer by means of measurement, of the kernel function is described. The obtained measurement results not only inform on the air flow type but ran be directly applied as input in the integral equation based simulation of heat and mass transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号