首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
无线电   2篇
一般工业技术   3篇
  2020年   2篇
  2019年   2篇
  2012年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
Detection and inhibition of bacteria are universally required in clinics and daily life for health care. Developing a dual‐functional material is challenging and in demand, engaging advanced applications for both defined bioanalysis and targeted biotoxicity. Herein, magnetic silver nanoshells are designed as a multifunctional platform for the detection and inhibition of bacteria. The optimized magnetic silver nanoshells enable direct laser desorption/ionization mass spectrometry based metabolic analysis of bacteria (≈10 µL?1), in complex biofluids. The serum infection process (0–10 h) is monitored by statistics toward clinical classification. Moreover, magnetic silver nanoshells facilitate surface adhesion on bacteria due to nanoscale surface roughness and thus display long‐term antibacterial effects. Bacteria metabolism is studied with metabolic biomarkers (e.g., malate and lysine) identified during inhibition, showing cell membrane destruction and dysfunctional protein synthesis mechanisms. This work not only guides the design of material‐based approaches for bioanalysis and biotoxicity, but contributes to bacteria‐related diagnosis by using specific metabolic biomarkers for sensitive detection and new insights by monitoring metabolomic change of bacteria for antibacterial applications.  相似文献   
3.
4.
In this paper we present a series of experiments showing that vertical self-assembled diphenylalanine peptide nanowires (PNWs) are a suitable candidate material for cellular biosensing. We grew HeLa and PC12 cells onto PNW modified gold surfaces and observed no hindrance of cell growth caused by the peptide nanostructures; furthermore we studied the properties of PNWs by investigating their influence on the electrochemical behavior of gold electrodes. The PNWs were functionalized with polypyrrole (PPy) by chemical polymerization, therefore creating conducting peptide/polymer nanowire structures vertically attached to a metal electrode. The electroactivity of such structures was characterized by cyclic voltammetry. The PNW/PPy modified electrodes were finally used as amperometric dopamine sensors, yielding a detection limit of 3,1 microM.  相似文献   
5.
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and ranks as the fifth leading cause of visual impairment, but an understanding of DR development has been hampered by the lack of an efficient metabolomic tool. Herein, vanadium core–shell nanorods are developed for metabolic fingerprinting to probe molecular variation in DR. First, a series of vanadium core–shells are constructed with different elemental composition and structural parameters, using silica nanorods to support vanadium oxide. The plasma metabolic fingerprints (MFs) are extracted by the optimized vanadium core–shell nanorod‐assisted laser desorption/ionization mass spectrometry, by analyzing 500 nL of native plasma in seconds. As a result, DR patients are differentiated from non DR controls with a sensitivity of 94% and specificity of 90% using a classification model built on the plasma MFs. Furthermore, DR progression is monitored by a panel of plasma metabolic signatures with gradual changes. This work provides an advanced molecular tool for the metabolomic characterization of DR and may guide the clinical decision making in DR for personalized medicine in the future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号