首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1414篇
  免费   5篇
  国内免费   1篇
电工技术   11篇
综合类   2篇
化学工业   245篇
金属工艺   48篇
机械仪表   50篇
建筑科学   13篇
矿业工程   24篇
能源动力   25篇
轻工业   15篇
水利工程   17篇
石油天然气   78篇
无线电   124篇
一般工业技术   406篇
冶金工业   228篇
原子能技术   81篇
自动化技术   53篇
  2022年   21篇
  2021年   17篇
  2020年   18篇
  2019年   24篇
  2018年   49篇
  2017年   56篇
  2016年   55篇
  2015年   20篇
  2014年   29篇
  2013年   62篇
  2012年   32篇
  2011年   47篇
  2010年   34篇
  2009年   41篇
  2008年   37篇
  2007年   38篇
  2006年   21篇
  2005年   29篇
  2004年   15篇
  2003年   24篇
  2002年   17篇
  2001年   17篇
  1999年   24篇
  1998年   27篇
  1997年   33篇
  1996年   15篇
  1994年   15篇
  1993年   18篇
  1992年   17篇
  1991年   18篇
  1990年   24篇
  1989年   15篇
  1988年   20篇
  1986年   19篇
  1985年   21篇
  1984年   17篇
  1983年   15篇
  1982年   21篇
  1981年   32篇
  1980年   19篇
  1978年   30篇
  1977年   31篇
  1976年   39篇
  1975年   25篇
  1974年   20篇
  1973年   21篇
  1972年   17篇
  1971年   22篇
  1970年   23篇
  1968年   16篇
排序方式: 共有1420条查询结果,搜索用时 15 毫秒
1.
2.
3.
The β-hydroxyacyl-CoA-dehydrogenase (HADH) activity of unfrozen and thawed frog legs was investigated. The enzyme was extracted by either immersing frog legs in phosphate buffer 0.1 M, pH 6.0 at 25°C for 15 min or pressing them between trichinoscopy glasses. The enzyme activity was assayed using acetoacetyl-CoA as substrate and measured spectrophotometrically at 340 nm. It was possible by both extraction methods to distinguish between thawed and unfrozen samples although when the juice was obtained by pressing the HADH activity of the dilution was ~ 1.5 times higher than that obtained by immersion. The HADH activity was significantly higher (P≤0·001) in frozen-thawed frogs than in unfrozen legs because during freezing there is a release of HADH. No significative differences were found in the HADH activity in samples frozen in the temperature range -10 to -196°C. HADH activity was not affected by the storage time in crushed ice up to 6 days.  相似文献   
4.
5.
The VÉPP-5 injection complex under construction at the Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences is a powerful source of intense electron and positron bunches at 510 MeV, which covers all needs of the electron–positron colliding beam setups currently operating and under construction at the Institute of Nuclear Physics. The complex includes a 285 MeV linear electron accelerator, a 510 MeV linear positron accelerator, and an accumulator–cooler with beam injection and ejection channels. Intense work on the design, assembly, and tuning of the linear electron accelerator has been conducted in the last 2 yr. As a result, by August 2002 the linear electron accelerator was put into operation with all standard subsystems. By this time, the isochronous achromatic turning of the electron beam, a system for converting electrons into positrons, and the first accelerating structure of the linear positron accelerator were assembled and put into operation. All this made it possible to accelerate the positron beam up to 75 MeV. Preliminary results of tests of the linear accelerators are presented.  相似文献   
6.
7.
The characteristics of a piezo-optical transducer of a new design with high strain sensitivity at compact size have been studied.The original form of the photoelastic element provides a considerable increase in the stress in its working area at a given external force, resulting in an increase in the sensitivity of the transducer. The main characteristics of the transducer were measured using a specially designed device. The strain at a given applied force was calculated using a developed mathematical model of the transducer. As a result, the sensitivity to the relative strain was Δx/x=3 · 10?10, the dynamic range was at least four orders of magnitude higher and the gauge factor three orders of magnitude higher than those of strain-resistive gauges.  相似文献   
8.
The combined techniques of ESR and NMR were used to investigate the process of ortho-para conversion in solid molecular hydrogen, containing small amounts ( 500 ppm) of hydrogen atoms as impurity. Although the impurity atoms catalyze the effective conversion of the neighboring ortho-H2, the total catalyzed conversion rate at temperatures from 2.2 K to 4.4 K is much less than expected from the rate of the H atoms recombination. A possible explanation is given in terms of the diffusion of H atoms, which is confined to some defects in the crystal.  相似文献   
9.
In order to advance the development of quantum emitter-based devices, it is essential to enhance light-matter interactions through coupling between semiconductor quantum dots with high quality factor resonators. Here, efficient tuning of the emission properties of HgTe quantum dots in the infrared spectral region is demonstrated by coupling them to a plasmonic metasurface that supports bound states in the continuum. The plasmonic metasurface, composed of an array of gold nanobumps, is fabricated using single-step direct laser printing, opening up new opportunities for creating exclusive 3D plasmonic nanostructures and advanced photonic devices in the infrared region. A 12-fold enhancement of the photoluminescence in the 900–1700 nm range is observed under optimal coupling conditions. By tuning the geometry of the plasmonic arrays, controllable shaping of the emission spectra is achieved, selectively enhancing specific wavelength ranges across the emission spectrum. The observed enhancement and shaping of the emission are attributed to the Purcell effect, as corroborated by systematic measurements of radiative lifetimes and optical simulations based on the numerical solution of Maxwell's equations. Moreover, coupling of the HgTe photoluminescence to high quality factor modes of the metasurface improves emission directivity, concentrating output within an ≈20° angle.  相似文献   
10.
Russian Microelectronics - A set of monolithic integrated circuits (MICs) in the 22–25 GHz range based on gallium nitride nanoheterostructures on sapphire substrates is designed, produced,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号