首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
金属工艺   13篇
机械仪表   22篇
无线电   2篇
一般工业技术   5篇
自动化技术   22篇
  2018年   1篇
  2017年   1篇
  2014年   3篇
  2013年   8篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2008年   4篇
  2007年   8篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1982年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
The demand for delivering product variety has been increasing. Increased product variety caused by product customization, personalization, evolution and changes in their manufacturing systems. Variety allows manufacturers to satisfy a wide range of customer requirements, but it can also be a major contributing factor to increased complexity of assembly. Complexity is generally believed to be one of the main causes of the present challenges in manufacturing systems such as lengthy and costly design processes, higher life cycle costs and the existence of numerous failure modes. Complex assembly systems are costly to implement, run, control and maintain. Assessing complexity of assembly helps guides designers in creating assembly-oriented product designs and following steps to reduce and manage sources of assembly complexity. On the other hand, reducing complexity of assembly helps lower assembly cost and time, improves productivity and quality and increases profitability and competitiveness. The complexity of assembly should be assessed by considering both products and their assembly systems. In this paper, a structural classification coding scheme has been used to measure assembly systems complexity. It considers the inherent structural complexity of typical assembly equipment. The derived assembly systems complexity accounts for the number, diversity and information content within each class of the assembly system modules. A domestic appliance drive assembly system is used to demonstrate the use of the classification code to calculate the assembly system complexity. The developed complexity metrics can be used by designers as decision support tools to compare and rationalize various automated assembly systems alternatives and select the design that meets the requirements while reducing potential assembly complexity and associated cost.  相似文献   
2.

Editorial Introduction

Guest Editorial: Flexible-Joint and Flexible-Link Robots  相似文献   
3.
This paper presents the development and design of a robust linear controller for a flexible joint robot. First, a realistic model is developed taking into account the effects of stick-slip friction, nonlinear spring force characteristic, the rotors' Coriolis and centrifugal acceleration due to the velocities of the precedent links and rotors, and measurement noise. Second, a robust controller is designed using LQG/LTR techniques. Extensive simulation was performed on an experimental robot system using several trajectories. The results demonstrate that the proposed model/controller provides excellent tracking and regulation performance.  相似文献   
4.
The increased use of changeable characteristics in modern manufacturing and robotic systems and applications call for improved system control design that offers some degree of reconfigurability. The need for control reconfiguration of robotic systems arises due to some inherent characteristics of the robotic system, variations of robot parameters due to environmental changes, major task changes typical in production changeover or manufacturing system reconfiguration, or geometry changes due to the reconfiguration of modular manipulators. In this paper, a reconfigurable controller, the Supervisory Control Switching System (SCSS), is proposed to meet the new on-line demands for changeability in robotic systems. The SCSS is capable of selecting the most suitable controller for a particular task or situation, from separate controllers designed a priori. The applicability and effectiveness of the developed switching control scheme have been illustrated through computer simulations of an AdeptOne SCARA manipulators carrying out assembly tasks.  相似文献   
5.
Extracting information about contact between two convex bodies from the measured force vector is a prerequisite for any fine compliant motion control strategy. Contact information contains the direction and orientation of the contact surface normal and its relative location and orientation with respect to the compliant reference frame system.A method for interpreting the contact force feedback during compliant robot motion control, using kinematic screws, is presented. Domain specific rules combined with partial a priori knowledge of mating parts geometry and interpreted force signals are used to reason and make inferences about the initial contact configuration. The likely contact surfaces are predicted and point(s) or line(s) of contact are fully defined. These surfaces are idealized and represented by quadratic equations or polyhedral surfaces. The geometric properties of surfaces at the contact location are used to select the contact configuration when multiple solutions exist.An algorithm for predicting the Expected Contact Configuration (ECC) has been developed and is illustrated here with examples. Experimental validation of the developed expert system prototype, using a 6R manipulator, a six-axis force sensor, and a host computer is described.  相似文献   
6.
Traditionally, most industrial robots are programmed by teaching. The emergence of robot-level programming languages has improved the programmer's ability to describe and modify the robot moves. However, commercially available robot-level programming languages still fall short of the robot user's need to program complex tasks, and consequently, are not widely used in industry. There is an increasing need for integrating sensors feedback into the robot system to provide better perception and for improving the capacity of the robot to reason and make decisions intelligently in real time.The role of artificial intelligence in programming and controlling robots is discussed. Available robot programming systems including robot-level, object-level, and task-level languages are reviewed. The importance of developing intelligent robots in broadening the scope of flexible automation and opening the door to new robotic applications in space, under water and in harsh environments is outlined. The current development and implementation of programming and control systems for intelligent robots, at McMaster University, are explained. A number of research issues are discussed such as (1) automatic task planning, (2) knowledge representation and use, (3) world modeling, (4) reasoning in automatic assembly planning, and (5) vision monitoring of actions. Examples of geometric, functional, and handling reasoning, as they apply to assembly, are provided. The systems described in this paper are being implemented in the center for flexible manufacturing research and development. Several pieces of hardware are used, including a six-axis articulated robot, a grey-level vision system with a multi-camera, Micro VAX II, and a variety of graphics monitors. The languages available for software development include Common LISP, C, OPS5, VAL II, PASCAL, and FORTRAN 77. The domain of application is currently focused on mechanical assembly.  相似文献   
7.
Magnetostatic surface wave (MSSW) devices made with pure and gallium-substituted yttrium-iron garnet (Ga:La-YIG) films are described. These devices include nondispersive and dispersive delay lines, band-pass filters, oscillators, and resonators. By controlling the magnitude of the bias magnetic field and the temperature of operation, it is possible to tune these devices over a wide frequency range extending from 0.3 to 4 GHz and from 3 to 18 GHz using Ga:La-YIG and pure YIG films, respectively.These devices could be used in pulse compression radar, microscan receivers, complicated Fourier transform processors, and fundamental oscillator circuits. In this paper, we briefly show results for pure YIG devices tunable in C and X bands and discuss, in detail, the performance of the Ga:La-YIG devices for UHF applications.  相似文献   
8.
This study develops new solution methodologies for the flexible job shop scheduling problem (F-JSSP). As a first step towards dealing with this complex problem, mathematical modellings have been used; two novel effective position- and sequence-based mixed integer linear programming (MILP) models have been developed to fully characterise operations of the shop floor. The developed MILP models are capable of solving both partially and totally F-JSSPs. Size complexities, solution effectiveness and computational efficiencies of the developed MILPs are numerically explored and comprehensively compared vis-à-vis the makespan optimisation criterion. The acquired results demonstrate that the proposed MILPs, by virtue of its structural efficiencies, outperform the state-of-the-art MILPs in literature. The F-JSSP is strongly NP-hard; hence, it renders even the developed enhanced MILPs inefficient in generating schedules with the desired quality for industrial scale problems. Thus, a meta-heuristic that is a hybrid of Artificial Immune and Simulated Annealing (AISA) Algorithms has been proposed and developed for larger instances of the F-JSSP. Optimality gap is measured through comparison of AISA’s suboptimal solutions with its MILP exact optimal counterparts obtained for small- to medium-size benchmarks of F-JSSP. The AISA’s results were examined further by comparing them with seven of the best-performing meta-heuristics applied to the same benchmark. The performed comparative analysis demonstrated the superiority of the developed AISA algorithm. An industrial problem in a mould- and die-making shop was used for verification.  相似文献   
9.
The performance of the magnetostatic surface wave straight-edge resonator (MSSW-SER) is presented. The resonator uses a rectangular YIG film to propagate MSSWs where the straight edge serves as a reflector. Problems arising from coupling to width mode resonances and their effect on the main resonance are investigated. Through a careful choice of YIG and transducer parameters, the interference effects of the width mode resonances with the main resonance are minimized. As a result, highQ tunable microwave resonators with a tuning range from 2–20 GHz, insertion loss less than 10 dB, and spurious rejection better than 10 dB could be designed and fabricated. This MSSW resonator could be used to construct a tunable low-phase-noise feedback oscillator. However, the tuning range of this MSW feedback oscillator is limited by the phase change of the external amplifier circuit.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号