首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
能源动力   2篇
一般工业技术   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system. In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 (Klein et al., 2004) and Engineering Equation Solver (EES) (Klein, 2004) using co-solving technique.Both daily performance and yearly performance of the proposed system have been simulated. Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions. Besides the power being produced, the system can also produce about 10 times much thermal energy, which can be used for space heating, domestic hot water supply or driving absorption chillers. The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system.  相似文献   
2.
Exergy analysis is used as a tool to analyse the performance of an ejector refrigeration cycle driven by solar energy. The analysis is based on the following conditions: a solar radiation of 700 W/m2, an evaporator temperature of 10 °C, a cooling capacity of 5 kW, butane as the refrigerant in the refrigeration cycle and ambient temperature of 30 °C as the reference temperature. Irreversibilities occur among components and depend on the operating temperatures. The most significant losses in the system are in the solar collector and the ejector. The latter decreases inversely proportional to the evaporation temperature and dominates the total losses within the system. The optimum generating temperature for a specific evaporation temperature is obtained when the total losses in the system are minimized. For the above operating conditions, the optimum generating temperature is about 80 °C.  相似文献   
3.
In this paper, the performance of the solar-driven ejector refrigeration system with iso-butane (R600a) as the refrigerant is studied. The effects that both the operating conditions and the solar collector types have on the system's performance are also examined by dynamic simulation. The TRNSYS and EES simulation tools are used to model and analyze the performance of a solar-driven ejector refrigeration system. The whole system is modelled under the TRNSYS environment, but the model of the ejector refrigeration subsystem is developed in the Engineering Equations Solver (EES) program. A solar fraction of 75% is obtained when using the evacuated tube solar collector. In the very hot environment, the system requires relatively high generator temperature, thus a flat plate solar collector is not economically competitive because the high amount of auxiliary heat needed to boost up the generator temperature. The results from the simulation indicate that an efficient ejector system can only work in a region with decent solar radiation and where a sufficiently low condenser temperature can be kept. The average yearly system thermal ratio (STR) is about 0.22, the COP of the cooling subsystem is about 0.48, and the solar collector efficiency is about 0.47 at Te 15 °C, Tc 5 °C above the ambient temperature, evacuated collector area 50 m2 and hot storage tank volume 2 m3.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号