首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   5篇
化学工业   25篇
机械仪表   3篇
能源动力   15篇
轻工业   7篇
石油天然气   1篇
无线电   20篇
一般工业技术   18篇
冶金工业   2篇
自动化技术   19篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   3篇
  2014年   5篇
  2013年   12篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2001年   5篇
  1998年   2篇
  1997年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
We present the first step of a research aimed at automating a driven interactive 3D modeling of an existing architectural object. The method is based on oriented multi-image spherical panoramas produced by stitching techniques. The photogrammetric process has two steps: the creation of a semi-automatic process to find homolog points in two panoramas; the creation of parametric definitions for an interactive modeling creating points, segments, and surfaces based on the plotted points in the first step. By connecting these two steps, the creation of the model will be automatic, as we indicate the necessary points in just one panoramic photo. The principals of multi-view geometry and epipolar geometry were applied to simplify the calculation in the first step in order to create an automatic identification of the correspondent points in the other panorama. The epipolar geometry is described by both analytical and graphical programming, implementing in the first case a C++ application and in the second case a Rhinoceros and Grasshopper application. A case study of the Ponte Rotto in Rome (Italy) is presented.  相似文献   
2.
In recent years, implementing coordination mechanisms in decentralised supply chains to reduce the well-known negative effects of decentralisation, such as the ‘bullwhip effect’, has become a considerable challenge. Furthermore, with the dramatic developments in information and communication technologies, real-time information sharing has become increasingly easier to implement. In this work, we study a mono-product divergent supply chain composed of a supplier, a warehouse, retailers and customers in the context of decentralised and centralised decisions. The main objective of this study is to compare a decentralised supply chain combined with different scenarios of simultaneous upstream and downstream information sharing vs. a centralised supply chain. A mathematical model is developed to compare the logistics costs in the two decision contexts. The experimental results clearly show that the simultaneous sharing of customer demand and supplier-warehouse lead time information in a decentralised supply chain yields nearly equivalent logistics costs as the centralised supply chain context. However, the main beneficiary of the sharing is the warehouse, which receives approximately two-thirds of the benefit. Thus, incentives and revenue sharing contracts should be implemented to motivate and balance the benefits between supply chain partners.  相似文献   
3.
This paper describes an efficient hardware architecture of 2D-Scan-based-Wavelet watermarking for image and video. The potential application for this architecture includes broadcast monitoring of video sequences for High Definition Television (HDTV) and DVD protection and access control. The proposed 2D design allows even distribution of the processing load onto a set of filters, with each set performing the calculation for one dimension according to the scan-based process. The video protection is achieved by the insertion of watermarks bank within the middle frequency of wavelet coefficients related to video frames by their selective quantization. The 2-D DWT is applied for both video stream and watermark in order to make the watermarking scheme robust and perceptually invisible. The proposed architecture has a very simple control part, since the data are operated in a row-column-slice fashion. This organization reduces the requirement of on-chip memory. In addition, the control unit selects which coefficient to pass to the low-pass and high-pass filters. The on-chip memory will be small as compared to the input size since it depends solely on the filter sizes. Due to the pipelining, all filters are utilized for 100% of the time except during the start-up and wind-down times. The major contribution of this research is towards the selection of appropriate real time watermarking scheme and performing a trade-off between the algorithmic aspects of our proposed watermarking scheme and the hardware implementation technique. The hardware architecture is designed, as a watermarking based IP core with the Avalon interface related to NIOS embedded processor, and tested in order to evaluate the performance of our proposed watermarking algorithm. This architecture has been implemented on the Altera Stratix-II Field Programmable Gate Array (FPGA) prototyping board. Experimental results are presented to demonstrate the capability of the proposed watermarking system for real time applications and its robustness against malicious attacks.  相似文献   
4.

Context

Formal methods are very useful in the software industry and are becoming of paramount importance in practical engineering techniques. They involve the design and modeling of various system aspects expressed usually through different paradigms. These different formalisms make the verification of global developed systems more difficult.

Objective

In this paper, we propose to combine two modeling formalisms, in order to express both functional and security timed requirements of a system to obtain all the requirements expressed in a unique formalism.

Method

First, the system behavior is specified according to its functional requirements using Timed Extended Finite State Machine (TEFSM) formalism. Second, this model is augmented by applying a set of dedicated algorithms to integrate timed security requirements specified in Nomad language. This language is adapted to express security properties such as permissions, prohibitions and obligations with time considerations.

Results

The proposed algorithms produce a global TEFSM specification of the system that includes both its functional and security timed requirements.

Conclusion

It is concluded that it is possible to merge several requirement aspects described with different formalisms into a global specification that can be used for several purposes such as code generation, specification correctness proof, model checking or automatic test generation. In this paper, we applied our approach to a France Telecom Travel service to demonstrate its scalability and feasibility.  相似文献   
5.
The increased level of emissions of carbon dioxide into the atmosphere due to burning of fossil fuels represents one of the main barriers toward the reduction of greenhouse gases and the control of global warming. In the last decades, the use of renewable and clean sources of energies such as solar and wind energies has been increased extensively. However, due to the tremendously increasing world energy demand, fossil fuels would continue in use for decades which necessitates the integration of carbon capture technologies (CCTs) in power plants. These technologies include oxycombustion, pre‐combustion, and post‐combustion carbon capture. Oxycombustion technology is one of the most promising carbon capture technologies as it can be applied with slight modifications to existing power plants or to new power plants. In this technology, fuel is burned using an oxidizer mixture of pure oxygen plus recycled exhaust gases (consists mainly of CO2). The oxycombustion process results in highly CO2‐concentrated exhaust gases, which facilitates the capture process of CO2 after H2O condensation. The captured CO2 can be used for industrial applications or can be sequestrated. The current work reviews the current status of oxycombustion technology and its applications in existing conventional combustion systems (including gas turbines and boilers) and novel oxygen transport reactors (OTRs). The review starts with an introduction to the available CCTs with emphasis on their different applications and limitations of use, followed by a review on oxycombustion applications in different combustion systems utilizing gaseous, liquid, and coal fuels. The current status and technology readiness level of oxycombustion technology is discussed. The novel application of oxycombustion technology in OTRs is analyzed in some details. The analyses of OTRs include oxygen permeation technique, fabrication of oxygen transport membranes (OTMs), calculation of oxygen permeation flux, and coupling between oxygen separation and oxycombustion of fuel within the same unit called OTR. The oxycombustion process inside OTR is analyzed considering coal and gaseous fuels. The future trends of oxycombustion technology are itemized and discussed in details in the present study including: (i) ITMs for syngas production; (ii) combustion utilizing liquid fuels in OTRs; (iii) oxy‐combustion integrated power plants and (iv) third generation technologies for CO2 capture. Techno‐economic analysis of oxycombustion integrated systems is also discussed trying to assess the future prospects of this technology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
The spray-freeze drying (SFD) technique was applied to sonicated aqueous suspensions of spray-dried montmorillonite clay (MMT) to produce highly porous agglomerates (SFD-MMT). Both MMT (used as a reference) and SFD-MMT were subsequently incorporated in polypropylene (PP) via melt compounding to produce 2 wt % nanocomposites with and without maleic anhydride grafted polypropylene (PP-g-MA). Polypropylene nanocomposites containing SFD-MMT exhibited thinner silicate flake layers compared to large agglomerates in PP/MMT nanocomposites. SFD-MMT particles became even more finer in the presence of PP-g-MA (i.e., in PP/PP-g-MA /SFD-MMT) where it hindered PP crystallization instead of serving as nucleation sites for the PP crystallization during rapid cooling. SFD-MMT improved the thermal stability of PP/PP-g-MA by 30°C compared to only 5–8°C for MMT/nanocomposites. MMT acts as a heterogeneous nucleating agent in the nucleation-controlled PP nanocomposites, but the hindrance effect was observed for the PP/PP-g-MA with SFD-MMT. PP/PP-g-MA/SFD-MMT exhibited twice the edge surface energy as compared to PP/PP-g-MA/MMT. The incorporation of both types of MMT raised the tensile moduli of PP and PP/PP-g-MA, with no improvement in their tensile strength and a decrease in the elongation at break. The PP/PP-g-MA/SFD-MMT showed brittle failure. POLYM. ENG. SCI., 60:168–179, 2020. © 2019 Society of Plastics Engineers  相似文献   
7.
In Posttraumatic Stress Disorder (PTSD), the hypermnesis linked to the trauma produces various emotional disturbances that result in a state of increased hypersensitivity towards environmental stimuli. Accordingly, memory and emotional functions play a predominant role in the PTSD symptomatology. Through a distinctive approach to the cognitive psychopathology research, the goal of this review is to define the nature of the links between the memory and emotional processes in PTSD. The research conducted in this area, whether on explicit or implicit memory, reveals a memory bias in information specific to the trauma. In determining the workings of the cognitive mechanisms responsible for this traumatic information bias, we hope that this will provide a basis for progress to be made in the understanding of the cognitive mechanisms responsible for the repetitive mnemic symptoms of PTSD. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
8.
This paper aims at investigating the performance of a cylindrical ion transport reactor designed for oxy‐fuel combustion. The cylindrical reactor walls are made of dense, nonporous, mixed‐conducting ceramic membranes that only allow oxygen permeation from the outside air into the combustion chamber. The sweep gas (CO2 and CH4) enters the reactor from one side and mixes with the oxygen permeate, and the products are discharged from the other side. The process of oxygen permeation through the reactor walls is influenced by the flow condition and composition of air at the feed side (inlet air side) and the gas mixture at the permeate side (sweep gas side). The modeling of the flow process is based on the numerical solution of the conservation equations of mass, momentum, energy, and species in the axisymmetric flow domain. The membrane is modeled as a selective layer in which the oxygen permeation depends on the prevailing temperatures as well as the oxygen partial pressure at both sides of the membrane. The CFD calculations were carried out using fluent 12.1 (ANSYS, Inc., Canonsburg, PA, USA), whereas the mass transfer of oxygen through the membrane is modeled by a set of user defined functions. The model results were validated against previous experimental data, and the comparison showed a good agreement. The study focused on the effect of oxygen partial pressure and temperature on the resulting combustion zones inside the reactor for the two cases of co‐current and counter‐current flow regimes. The results indicated that the oxygen to fuel mass ratio increases as the percentage of CO2 increases in the inflow sweep gas for both co‐current and counter‐current flows. The obtained sweep mixture ratio (CO2/CH4) of 24 is found within the stoichiometric limit over most of the reactor length in the co‐current configuration, whereas the sweep mixture ratio of 15.67 is found in the counter‐current configuration owing to the high O2 permeation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号