首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学工业   1篇
能源动力   1篇
一般工业技术   1篇
原子能技术   1篇
  2024年   1篇
  2022年   1篇
  2017年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The influence of sustained and cyclic loading on the crack growth behavior of a multilayered alumina–zirconia composite exhibiting high internal compressive stresses is investigated. The study was conducted on precracked notched samples and focused on evaluating the static and cyclic fatigue resistance to crack extension beyond the first arresting interface (threshold) as well as the mechanisms involved during stable crack growth through the layered structure for each loading condition studied. Although it is found that the layered composite is prone to subcritical crack growth, the effectiveness of operative toughening mechanisms, i.e., compressive residual stresses as well as crack bifurcation and delamination at interfaces, is observed to be independent of the loading conditions. As a consequence, fatigue degradation of the multilayered ceramics studied is restricted to the intrinsic environmental-assisted cracking of the individual layers, pointing them out as toughened composites practically immune to variable stresses and much less static and cyclic fatigue sensitive than other structural ceramics.  相似文献   
2.
The cost of manufacturing and electricity consumption are key considerations in encouraging the adoption of solar air heaters (SAH) in sunny and low-income areas. These parameters can have a significant impact on promoting the use of these devices. In this study, solar air heating was designed with the objective of achieving the highest possible efficiency/cost ratio. It is a corrugated channel SAH whose structure is equipped with two barriers perforated with a sufficient number of holes for a good airflow distribution. A new model was developed to evaluate the qualitative parameters that describe the thermos-energetic behavior of a heating system. These parameters were measured using experimental data obtained under real operating conditions. The thermal model assumes a uniform temperature for the glass, absorber, and insulation of the collector, while the temperature of the circulating air is assumed to vary linearly along the collector. To ensure that these assumptions were valid, the collector was cut into a number of 0.1 m sections in the direction of flow. By comparing the numerical results with the experimental data, the model was validated and then used to calculate the temperature profiles of the different elements of the collector, as well as to estimate the impact of certain operational parameters on its thermal performance. Relative percentage error values, between the numerical and the experimental results, of 1.7517%, 1.0750%, 0.8577%, 2.2371%, and 2.3637% for absorber plate temperature, outlet airflow temperature, useful power, thermal, and effective efficiencies, respectively, are recorded.  相似文献   
3.

The effect of the chemical composition on the morphology and microstructure of poly(ether ether ketone) (PEEK)/reduced graphene oxide (RGO) nanocomposite coatings is analyzed. RGO induced three main morphological features in the nanocomposites: (i) a large-scale co-continuous morphology related to nanosheets whose basal planes were mainly aligned with the coating surface, (ii) a dendritic morphology of PEEK domains, and (iii) irregular domains related to the deposition of PEEK particles wrapped by the nanosheets. The development of these morphological features was influenced by the RGO content, allowing the modification of the surface roughness. RGO also induced changes in the melting and non-isothermal crystallization of the polymeric matrix and promoted transcrystallinity in PEEK that, in turn, was a key factor in the development of the final microstructure. In addition, polymer chain mobility was observed to be hindered at high nanofiller concentrations, increasing the glass transition temperature, and diminishing the recrystallization of the polymeric matrix.

  相似文献   
4.
Irradiated fuel pellets present radial gradient porosity. CeO2 has been proven as a surrogate material to understand irradiated mixed oxide (MOX) due to its similar structural and mechanical properties. A novel compaction device was developed to produce CeO2 cylindrical pellets with controlled radial porosity. Three blends of CeO2 with different binder contents (0.5, 3 and 7.5 vol.% of ethylene-bis-stearamide, EBS) were prepared and used to obtain three different porosities for the core, intermediate and outer rings of pellets, respectively. Different compaction pressures were employed in each region to get the intended porosities. The whole pellet was subjected to a heating rate up to 500 °C to remove the EBS binder. Finally, a pressureless sintering step was performed at 1700 °C for 4 h. A microstructural characterization was performed in the three areas, including grain size and porosity. Mechanical properties like hardness, fracture toughness and tribo-mechanical response, as scratch resistance, were also determined. Pellets fabricated from this device have shown microstructural and mechanical properties with a good correlation to those of irradiated nuclear fuel.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号