首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
化学工业   14篇
能源动力   1篇
轻工业   1篇
一般工业技术   21篇
冶金工业   4篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Anatase-TiO2 cylindrical pellets were microwave sintered and partially transformed to rutile-TiO2.The rutile concentration profile was determined as a function of location within the pellet. The rutile distribution in the microwavesintered pellets was different from that in pellets sintered by conventional fast firing. Temperature profiles within the pellets were estimated using the irreversible nature of the anatase-rutile transformation. The estimated temperature profile within each pellet was not uniform. In the axial direction, maximum temperature occurred in the middle of the pellet. In the radial direction, maximum temperature occurred at 1 mm below the surface of the cylinder wall. Analysis of the temperature profile indicated that, although heat flow occurred in the microwave-sintered pellet, the temperature profile did not change during a microwave exposure of 5–90 min.  相似文献   
2.
An extensive X-ray study of CeO2–Nd2O3 solid solutions was performed, and the densities of solid solutions containing various concentrations of NdO1.5 were measured using several techniques. Solid solutions containing 0–80 mol% NdO1.5 were synthesized by coprecipitation from Ce(NO3)3 and Nd(NO3)3 aqueous solutions, and the coprecipitated samples were sintered at 1400°C. A fluorite structure was observed for CeO2–NdO1.5 solid solutions with 0–40 mol% NdO1.5, which changed to a rare earth C-type structure at 45–75 mol% NdO1.5. The change in the lattice parameters of CeO2–NdO1.5 solid solutions, when plotted with respect to the NdO1.5 concentration, showed that the lattice parameters followed Vegard's law in both the fluorite and rare earth C-type regions. The maximum solubility limit for NdO1.5 in CeO2 solid solution was approximately 75 mol%. The relationship between the density and the Nd concentration indicated that the defect structure followed the anion vacancy model over the entire range (0–70 mol% NdO1.5) of solid solution.  相似文献   
3.
4.
Post-translational modifications (PTMs) of serine and threonine occur by diverse mechanisms, including phosphorylation, sulfation, and various types of sugar chain modifications, making characterization of the resulting structures very labor-intensive. Moreover, to fully understand the biological functions of PTMs, both the sites of modification and the modified structures must be analyzed. The present work describes a novel, versatile strategy in which the released O-glycan and the formerly glycosylated/phosphorylated peptide are labeled and thus amenable to further study. In this approach, glycopeptides/phosphopeptides are subjected to β-elimination in the presence of pyrazolone derivatives (BEP), which in the same reaction labels the formerly glycosylated/phosphorylated peptide. The reaction is essentially a β-elimination/Michael addition in which a carbon-carbon bond-forming Michael donor rather than a heteroatomic Michael donor is used. The O-glycans released upon BEP are recovered as bis-pyrazolone derivatives, without any detectable side reaction (peeling). Using this technique, the O-glycan profiles of model mucin-type glycoproteins were successfully analyzed. The BEP strategy discriminates between phosphorylated and GlcNAcylated peptides, since cleaved GlcNAc is detectable. In addition, both the released O-glycan and the formerly glycosylated peptide can be selectively labeled by different reagents via a β-elimination reaction performed in the presence of pyrazolone and the thiol Michael donor.  相似文献   
5.
Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).  相似文献   
6.
Gold nanorods showing surface plasmon (SP) bands in the near-IR region are used as bioimaging probes that respond to near-IR light in mice. The SP bands of intravenously injected polyethylene glycol-modified gold nanorods are directly monitored from the mouse abdomen by using a spectrophotometer equipped with an integrating sphere. The absorbance at 900 nm from the gold nanorods immediately increases after injection and reaches a plateau. The injection of phosphatidylcholine-modified gold nanorods also increases the absorbance at 900 nm, but the absorbance decreases single exponentially with a 1.3-min half-life. In vivo spectral changes of gold nanorods depend on the surface characteristics, and can be observed in real time using simple spectroscopic measurements.  相似文献   
7.
Despite high theoretical sensitivity, low-cost manufacture, and compactness potentially amenable to lab-on-a-chip use, practical hurdles have stymied the application of the quartz crystal microbalance (QCM) for aqueous applications such as detection of biomolecular interactions. The chief difficulty lies in achieving a sufficiently stable resonance signal in the presence of even minute fluctuations in hydrostatic pressure. In this work, we present a novel versatile planar sensor chip design (QCM chip) for a microliter-scale on-line biosensor. By sealing the quartz resonator along its edges to a flat, solid support, we provide uniform support for the crystal face not exposed to solvent, greatly decreasing deformation of the crystal resonator under hydrostatic pressure. Furthermore, this cassette design obviates the need for direct handling when exchanging the delicate quartz crystal in the flow cell. A prototype 27-MHz sensor signal exhibited very low noise over a range of flow rates up to 100 microL/min. In contrast, signals obtained from a conventional QCM sensor employing an O-ring-based holder were less stable and deteriorated even further with increasing flow rate. Additional control designs with intermediate amounts of unsupported undersurface yielded intermediate levels of stability, consistent with the interpretation that deformation of the crystal resonator under fluctuating hydraulic pressure is the chief source of noise. As a practical demonstration of the design's high effective sensitivity, we readily detected interaction between myoglobin and surface-bound antibody.  相似文献   
8.
Monodisperse microspheres of copolymers of glycidyl methacrylate were prepared by dispersion polymerization in organic media. The microsphere diameter could be adjusted in the range from 0$md$5 μm to 5μm by changing the monomer concentration, the type of dispersion medium and the content of the comonomers. Terpolymers of glycidyl methacrylate, 2-hydroxyethyl methacrylate and tri(ethylene glycol) dimethacrylate were analysed by thermal decomposition gas chromatography and the compositions of the polymers agreed well with those of the monomer mixtures. The epoxide of the polymer microspheres was hydrolysed to α,β-diol with dilute sulphuric acid without side reactions except the slight formation of sulphate. It was confirmed by the 13CFT-NMR spectrum that the main structure of the hydrolysate was that of poly(glyceryl methacrylate). In the reaction of the epoxide with ammonia, the predominant production of tertiary amine was presumed by the relationship between the conversion of the epoxide and the nitrogen content of the reaction product. The amination of the epoxide with secondary amines resulted in the quantitative formation of the corresponding tertiary amines.  相似文献   
9.
In order to investigate the relationship between structure and function of a putative fusogenic region of PH-30a, a protein active in sperm-egg fusion, two peptides, SFP22 and SFP23, whose sequences correspond to the residues 90-111 and 89-111 of PH-30 alpha, respectively, were chemically synthesized. An analog of SFP23, SFP23AA, which has an Ala-Ala sequence instead of the Pro-Pro sequence in SFP23, was also prepared. The CD study indicated that SFP22 and SFP23 mainly took a beta-structure in the presence of DPPC and DPPC/DPPG (3/1) vesicles, while SFP23AA showed an alpha-helical pattern though the alpha-helical content calculated was low (25-30%). alpha-Helical CD curve was observed for these peptides in trifluoroethanol. The membrane-perturbing activity of SFP22 and SFP23 was weaker than that of SFP23AA. On the other hand, the membrane-fusogenic activity of SFP22 and SFP23 to acidic phospholipid bilayers was much stronger than that of SFP23AA. All the peptides caused very weak cell lysis. These results are consistent with the reported speculation [Blobel, C. P. et al. (1992), Nature (London) 356, 248-252] that residues 90-111 of PH-30 alpha may be the fusogenic region and suggest that the Pro-Pro sequence is one of the important factors for holding the active secondary structure of the fusogenic region of PH-30 alpha in membranes.  相似文献   
10.
Gold nanorods that have an absorption band in the near-infrared region and a photothermal effect have been used as nanodevices for near-infrared imaging and thermal therapy. Choice of the optimal shape of gold nanorods which relates optical properties and in vivo biodistribution is important for their applications. In the present study, to investigate the relationship between the shape of gold nanorods and their biodistribution after intravenous injection, we first prepared two types of gold nanorods that had distinct aspect ratios but had the same volume, zeta potential, and PEG density on the gold surface. Biodistributions of the two types of gold nanorods after intravenous injection into tumor-bearing mice were then compared. Although a slight difference in accumulation in the spleen was observed, no significant difference was observed in the liver, lung, kidney, and tumors. These results suggest that biodistribution of the gold nanorods in the aspect ratio range of 1.7 to 5.0, diameter of 10 to 50 nm, and volume of approximately 4 × 103 nm3 was dependent mainly on surface characteristics, PEG density, and zeta potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号