首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学工业   1篇
建筑科学   3篇
一般工业技术   9篇
冶金工业   1篇
自动化技术   1篇
  2020年   1篇
  2012年   2篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Ates N  Kitis M  Yetis U 《Water research》2007,41(18):4139-4148
The formation of THMs and HAAs after chlorination of bulk water fractions of low-SUVA (specific UV absorbance) surface waters was investigated, and the applicability of SUVA and differential UV spectroscopy for monitoring THMs and HAAs in such waters was evaluated. Samples from two reservoirs were fractionated employing XAD-8, XAD-4, MIEX resin and granular activated carbon adsorption. A total of 83 bulk water NOM fractions (i.e., the remaining solutions after contact with the adsorbent or resin at various doses) were obtained and chlorinated. The majority of NOM in both waters was found to have average molecular weights <2000 Da and SUVA values <2L/mg Cm, indicating that NOM in the tested waters contained dominantly lower molecular weight fractions and low aromaticity. SUVA did not correlate well with the formation and speciation of THMs and HAAs, suggesting that SUVA does not capture the reactive sites on NOM moieties responsible for DBP formation in low-SUVA waters. Similarly, no correlations were found among THMs/HAAs formations and differential UV spectroscopy, indicating the formation of DBPs independent of destruction in UV-absorbing sites. In all fractions, concentrations of THMs were higher than those of HAAs. Chlorinated DBP species were dominant over brominated ones due to low bromide concentrations. The results overall suggested that low- or non-UV-absorbing NOM moieties play important roles in the formation of DBPs in waters with low SUVA, low DOC and low bromide levels.  相似文献   
2.
Removal of Pb(II) by using resting cells of anaerobically digested sludge (ADS) obtained from a nearby wastewater treatment plant was examined. Firstly, sorption kinetic and equilibrium experiments were conducted using agitated, thermostated (25 degrees C) batch reactors. The maximum Pb(II) sorption capacity was found to be very high (1,750 mg/g dry ADS or 8.45 mmol/g dry ADS). At all initial Pb(II) concentrations tested, sorption resulted in neutralization with an increase in the solution pH from an initial value of 4.0-5.5 to an equilibrium value of 7.0-8.0, at which Pb(II) can precipitate as hydroxide. The removal of Pb(II) by ADS was found to involve bioprecipitation as well as biosorption. FTIR spectrometry highlighted carboxyl groups present on the surface of ADS as the major functional groups responsible for biosorption. Secondly, a three-stage semi-continuous pseudo-counter current reactor system was tested to reduce ADS requirement in comparison to a conventional single-stage batch reactor. At an initial Pb(II) concentration of about 200 mg/L, an effluent Pb(II) concentration of 1.3 mg/L was achieved in the three stage reactor, corresponding to a metal removal capacity of 682.7 mg/g dry ADS (3.30 mmol/g), in comparison to 1.9 mg/L and 644.0 mg/g dry ADS (3.10 mmol/g) for the single-stage batch reactor.  相似文献   
3.
In this work we investigated magnetization and vortex configurations in mesoscopic superconducting samples in the presence of square columnar defects (CDs). We solved numerically the nonlinear TDGL equations for different samples to study magnetization as a function of the applied magnetic field. In calculations, we focused mainly on four samples with different numbers of CDs which have the same total surface area. In this way, the total superconducting area remained the same with increasing the number of CDs for a fixed sample size. We found that the superconducting regions still exist inside the sample at high applied magnetic fields with increasing the number of CDs but irreversible effects became increasingly prominent, when the field is returned to zero. The results are discussed in frame of surface and pinning effects in mesoscopic systems.  相似文献   
4.
The applicability of Fenton's oxidation to improve the biodegradability of a pharmaceutical wastewater to be treated biologically was investigated. The wastewater was originated from a factory producing a variety of pharmaceutical chemicals. Treatability studies were conducted under laboratory conditions with all chemicals (having COD varying from 900 to 7000 mg/L) produced in the factory in order to determine the operational conditions to utilize in the full-scale treatment plant. Optimum pH was determined as 3.5 and 7.0 for the first (oxidation) and second stage (coagulation) of the Fenton process, respectively. For all chemicals, COD removal efficiency was highest when the molar ratio of H(2)O(2)/Fe(2+) was 150-250. At H(2)O(2)/Fe(2+) ratio of 155, 0.3M H(2)O(2) and 0.002 M Fe(2+), provided 45-65% COD removal. The wastewater treatment plant that employs Fenton oxidation followed by aerobic degradation in sequencing batch reactors (SBR), built after these treatability studies provided an overall COD removal efficiency of 98%, and compliance with the discharge limits. The efficiency of the Fenton's oxidation was around 45-50% and the efficiency in the SBR system which has two reactors each having a volume of 8m(3) and operated with a total cycle time of 1 day, was around 98%, regarding the COD removal.  相似文献   
5.
The effect of C/N ratio of activated sludge on heavy metal biosorption was investigated. Three sets of semi-continuous reactors with different feed C/N ratios (9, 21 and 43 mg COD/mg TKN) were set up. Sorption equilibrium tests have indicated that the biosorptive capacity of activated sludge was highly dependent on metal species and the C/N ratio. The increase in C/N ratio resulted in an increase in the Cd(II) sorption capacity of activated sludge whereas it decreased the Cu(II) sorption capacity. As for Zn(II), a different behavior was observed such that, the highest and lowest capacities have occurred at C/N ratio of 21 and 43, respectively. For Ni(II) biosorption, isotherm tests produced greatly scattered data; so, it was not possible to obtain any plausible result to indicate the relationship between maximum adsorptive capacity and C/N ratio. The accompanying release of Ca(II) and Mg(II) ions and also carbohydrates into the solution during biosorption have indicated that ion exchange mechanism was involved however, was not the only mechanism during the sorption process.  相似文献   
6.
A New Formulation Approach for Location-Routing Problems   总被引:1,自引:1,他引:0  
A Location-Routing Problem (LRP) combines two difficult problems, facility location and vehicle routing, and as such it is inherently hard to solve. In this paper, we propose a different formulation approach than the common arc-based product-flow (Arc-BPF) approach in the literature. We associate product amounts to the nodes of the network resulting in a node-based product-flow (Node-BPF) formulation. Our main objective is to develop LRP models with fewer constraints and variables, which can be solved more efficiently. To introduce the proposed approach, we reformulate a complex four-index Arc-BPF LRP model from the literature as a three-index Node-BPF model, which computationally outperforms the former. We then introduce a heuristic method.  相似文献   
7.
This paper describes the final part of a study on the recovery of print- and beck-dyeing wastewaters of the carpet manufacturing industry by membrane processes. These wastewaters had been previously treated separately where the print dyeing wastewaters were recovered by chemical precipitation followed by nanofiltration (NF) and beck-dyeing wastewaters were subjected to microfiltration (MF) and pH neutralization prior to NF. In this study, a co-treatment scheme after separate pre-treatment stages was adopted to simplify the overall process. The effect of mixing ratio on membrane fouling was also investigated. The co-treatment strategy was found advantageous since the number of NF units was minimized and the pH neutralization step in separate treatment of beck-dyeing wastewaters was eliminated, providing a reduction of chemical usage.  相似文献   
8.
This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91+/-2% and 84+/-4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75+/-10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did not adversely affect system performance. Although biological treatment is quite efficient, the wastewater does not meet the reuse criteria. Hence, further treatment to improve treated water quality was investigated using nanofiltration. Dead-end microfiltration (MF) with 5 microm pore size was applied to remove coarse particles before nanofiltration. The color rejection of nanofiltration was almost complete and permeate color was always lower than 10 Pt-Co. Similarly, quite high rejections were observed for COD (80-100%). Permeate conductivity was between 1.98 and 2.67 mS/cm (65% conductivity rejection). Wastewater fluxes were between 31 and 37 L/m2/h at 5.07 bars corresponding to around 45% flux declines compared to clean water fluxes. In conclusion, for denim textile wastewaters nanofiltration after biological treatment can be applied to meet reuse criteria.  相似文献   
9.
The minimization of chlorinated organic compounds in the effluents of the chlorination unit of a pulp mill is proposed by the use of a control structure for the chlorination unit. Bleached pulp properties are related to the unbleached pulp properties: lignin content, brightness, and viscosity, as well as the amount of chlorinated organics in the bleachery effluent. The best feasible control pairings are studied by RGA and SVD methods. Kappa number of the bleached pulp (a measure of lignin content) and percent consistency of the pulp to be bleached; residual chlorine (which affects the amount of chlorinated organics discharged) and percent chlorine/pulp ratio adapted in the chlorination stage; and exit pulp viscosity (which directly affects strength and tear resistance of the paper) and residence time in the chlorinator are chosen to be the best pairings.  相似文献   
10.
Clean Technologies and Environmental Policy - The Industrial Emission Directive (IED) requires industrial establishments to apply the best available techniques (BATs), and competent environmental...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号