首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   5篇
综合类   1篇
化学工业   1篇
无线电   5篇
一般工业技术   9篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有16条查询结果,搜索用时 250 毫秒
1.
2.
Prediction of energy consumption for LoRa based wireless sensors network   总被引:1,自引:0,他引:1  
Wireless Networks - This paper shows a method for predicting the lifetime of a wireless sensor network based on the LoRa Ra-01 wireless modules. To develop a prediction model of the energy...  相似文献   
3.
4.
We present a method for determining the three-dimensional intensity distribution of directed laser radiation with micrometer resolution in restricted volumes. Our method is based on the incoupling and guiding properties of optical fibers, with the current version requiring only a few hundred micrometers across the measuring volume. We characterize the performance of the method and experimentally demonstrate profiling of micrometer-sized laser beams. We discuss the limiting factors and routes toward a further increase of the resolution and beam profiling in even more restricted volumes. Finally, as an application example, we present profiling of laser beams inside a micro ion trap with integrated optical fibers.  相似文献   
5.
The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side‐effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox‐ and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium‐, iron‐, manganese‐, and zirconium‐doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.  相似文献   
6.
Polydopamine-coated FeCo nanocubes (PDFCs) were successfully synthesized and tested under microwave irradiation of 2.45 GHz frequency and 0.86 W/cm2 power. These particles were found to be non-toxic in the absence of irradiation, but gained significant toxicity upon irradiation. Interestingly, no increase in relative heating rate was observed when the PDFCs were irradiated in solution, eliminating nanoparticle (NP)-induced thermal ablation as the source of toxicity. Based on these studies, we propose that microwave-induced redox processes generate the observed toxicity.  相似文献   
7.
8.
Amodel of broadband V-band transition from a rectangular air-filled waveguide to substrate integrated waveguide has been proposed. Theoretical principles used for constructing the model of transition are also presented.  相似文献   
9.
Artificial magnetoception is a new and yet to be explored path for humans to interact with the surroundings. This technology is enabled by thin film magnetic field sensors embedded in a soft and flexible format to constitute magnetosensitive electronic skins (e-skins). Being limited by the sensitivity to in-plane magnetic fields, magnetosensitive e-skins are restricted to basic proximity and angle sensing and are not used as switches or logic elements of interactive wearable electronics. Here, a novel magnetoreceptive platform for on-skin touchless interactive electronics based on flexible spin valve switches with sensitivity to out-of-plane magnetic fields is demonstrated. The technology relies on all-metal Co/Pd-based spin valves with a synthetic antiferromagnet possessing perpendicular magnetic anisotropy. The flexible magnetoreceptors act as logic elements, namely momentary and permanent (latching) switches. The switches maintain their performance even upon bending to a radius of less than 3.5 mm and withstand repetitive bending for hundreds of cycles. Here, flexible switches are integrated in on-skin interactive electronics and their performance as touchless human-machine interfaces is demonstrated, which are intuitive to use, energy efficient, and insensitive to external magnetic disturbances. This technology offers qualitatively new functionalities for electronic skins and paves the way towards full-fledged on-skin touchless interactive electronics.  相似文献   
10.
Railway Engineering Science - Sorting humps are the main technical means providing the breaking- and making-up of freight trains. Automation of sorting process by implementing microprocessor...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号