首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   4篇
化学工业   1篇
矿业工程   3篇
冶金工业   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
针对废旧三元正极材料回收过程中工艺流程长、酸碱消耗高、锂直收率低、回收成本较高等问题,提出了助剂焙烧常温水浸联合新工艺,选择性提取废旧三元正极粉料中的锂,实现锂与其他金属(镍、钴、锰)的高效分离。新工艺以试剂A(无机酸)、试剂B(无机酸盐)为助剂,通过低温煅烧转化与常温水浸技术,提高废旧三元正极材料中锂的直收率,研究了煅烧温度、助剂与正极材料质量比、浸出液固比等条件对金属浸出率的影响。结果表明,在煅烧温度600℃、助剂A添加量为正极材料质量的50%、助剂B添加量为正极材料质量的5%、煅烧时间2h、水浸液固比3mL/g的条件下,Li浸出率达95%以上,浸出液中Li+浓度21g/L以上,其他金属(Ni、Co、Mn)含量均小于1mg/L。  相似文献   
2.
采用硫酸体系对钛酸锂废料选择性提锂、浸出液除杂沉Li2CO3、浸出渣通过固相烧结法制备TiO2。研究了硫酸浓度、液固比、反应时间等对锂浸出率的影响,锂离子浓度、碳酸钠添加量、反应温度等对Li2CO3产品质量的影响。结果表明,最佳酸浸工艺为: 硫酸浓度1.5 mol/L、液固比3∶1、95 ℃下反应2 h,此时锂浸出率为96.80%; 最佳沉锂工艺为: 在净化液Li+浓度27 g/L、碳酸钠添加量为理论值的1.10倍、沉锂温度95 ℃、反应时间40 min,此条件下得到的碳酸锂产品主含量大于99.65%,达到行业电池级碳酸锂要求。本工艺锂浸出率高,无废液产生,工艺流程短,操作简单,成本较低,可为钛酸锂废料的综合回收提供借鉴。  相似文献   
3.
以草酸盐、磷酸盐和碳酸盐为原料, 采用喷雾干燥法制备前驱体, 经固相烧结制得钠离子电池NaFePO4正极材料。通过X射线衍射分析、扫描电镜、激光衍射粒度分析、充放电测试、循环伏安法对材料进行了结构、形貌及电化学性能表征。结果表明, 喷雾干燥制得了球形前驱体, 经低温烧结的钠离子电池NaFePO4正极材料具有良好的电化学活性, 其嵌钠平台在3.0 V左右, 在0.1C倍率下, 其首次放电容量为100 mAh/g, 经过30次循环, 其可逆放电比容量达93 mAh/g。  相似文献   
4.
采用真空熔炼法制备了不同La/Y比的A2B7型LaxY3-xNi9.7Mn0.5Al0.3(x=0.2,0.4,0.6,0.8,1.0)储氢合金。通过XRD、SEM、气相PCT曲线和电化学充放电循环曲线测试等方法,系统研究了A侧Y元素部分替代La元素对合金相结构和合金性能的影响。结果表明,制备的合金主相为Ce2Ni7相,同时还含有少量Gd2Co7相、PuNi3相和LaNi5相。主相Ce2Ni7相丰度随着La/Y比增加而逐渐增大,当La/Y比为1∶2时,LaY2Ni9.7Mn0.5Al0.3合金吸氢量最大,为1.317%。经过150次充放电循环,LaY2N...  相似文献   
5.
采用碳酸盐共沉淀-高温烧结法制备了La掺杂层状富锂锰基氧化物正极材料Li1.2Mn0.54-xNi0.13Co0.13LaxO2(x=0, 0.01, 0.03, 0.05),考察了La掺杂量对正极材料的结构及电化学性能的影响.采用X射线衍射(XRD)和扫描电镜(SEM)分析研究了正极材料的结构和形貌特征,材料的电化学性能采用交流阻抗和充放电测试仪进行测试分析.研究结果表明:所有样品均保持层状α-NaFeO2结构,随着La掺杂量的增加,样品形貌未发生明显变化,样品放电容量呈现先增大后降低的趋势,当La掺杂量为0.03时,具有最高的放电比容量285.3 mAh/g(0.1 C),经过50次循环后的放电比容量为260.5 mAh/g,容量保持率为91.3 %.   相似文献   
6.
磷酸锂渣作为低浓度含锂废液的回收产物,因杂质含量高难以直接作为锂电池的生产原料。为充分利用该类磷酸锂渣,以缓解新能源汽车产业的快速发展对锂资源的需求压力,依据锂盐与钙盐在弱酸性条件下具有较大的溶解性差异,向磷酸锂中添加一定量酸和易溶性钙盐,在酸性条件下直接实现磷酸锂渣中锂与磷的分离。实验研究了酸加入量、钙加入量、转化终点pH、转化液固比及转化时间对锂转化效率的影响,发现在酸加入量与固体原料的体积质量比为1.04 mL/g、钙加入量为磷酸锂中磷物质的量的0.9倍、回调pH终点为4.0条件下,锂的转化率可达96.8%。转化液经调节pH除杂、离子交换深度除杂,控制完成液的锂浓度、碳酸钠过滤精度、反应体系温度等,可制备出电池级碳酸锂。碳酸锂产品主成分质量分数约为99.65%,产品质量符合YS/T 582—2013《电池级碳酸锂》的要求,锂的综合回收率达到93.4%。  相似文献   
7.
采用HCl+H_2O_2体系对铁锂废料选择性提锂,浸出液除杂沉Li_2CO_3;浸出渣盐酸酸溶后,采用Na_2CO_3控制pH制备FePO_4·2H_2O。主要研究盐酸用量、H_2O_2用量和液固比对锂浸出率的影响;反应pH、反应温度、反应物Fe/P比对FePO_4·2H_2O产品质量的影响。两工序后液混合可获得Li_3PO_4副产物。工艺中无铁的废渣产生,锂回收率达到97%,铁回收率达到98%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号