首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
综合类   1篇
金属工艺   4篇
冶金工业   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
在650、680和710 ℃不同温度条件下对碳质量分数为0.66%的淬火高碳钢进行了石墨化处理,并利用场发射扫描电子显微镜、电子探针、X-射线衍射仪和透射电子显微镜对其石墨化过程的组织进行金相分析,以及利用组织转变动力学理论,绘制了其石墨化过程的动力学曲线,并建立了相应的动力学方程。研究结果显示:在石墨化过程中,淬火马氏体首先向析出碳化物的稳定状态转变,且在碳化物为渗碳体Fe3C时,石墨粒子析出速度开始明显增加;基体组织中针叶状α-Fe发生再结晶,由等轴状铁素体逐步代替针叶状的α-Fe;铁素体中的碳含量随着石墨化时间的延长而逐步降低,即由过饱和状态转变为稳定态,碳含量在石墨粒子中突变增为峰值,而铁含量则突变降为谷值,由此表明,渗碳体分解的碳向石墨核心扩散,铁自石墨核心处扩散出来,而形成石墨粒子;石墨粒子面积分数随时间变化的曲线呈S形状,即该动力学过程符合动力学模型JMAK(Johnson-Mehl-Avrami-Kolmogorov)方程,且该方程中的n值为1.5~1.7。   相似文献   
2.
对SWRCH45K中碳冷镦钢在万能材料试验机上进行室温压缩变形,观察了压缩试样表面质量及其内部组织,以及分析了压缩试样侧表面赤道位置的轴向与周向应变。结果表明:该钢在压缩变形过程中,压缩载荷先随位移的增加而稳定增大,当位移大于7. 5 mm时,压缩载荷急剧增大;随压下量的增加,压缩试样的鼓度值先增大后减小。载荷和鼓度值在位移7. 5 mm时,同时出现变化趋势的改变,这是由于压缩变形的不均匀应变硬化所致,即在位移小于7. 5 mm的压缩变形过程中,大变形区位于试样的中心位置,其应变硬化程度高;而在随后的位移大于7. 5 mm的压缩变形过程中,该区将因应变硬化程度高、其进一步变形所需变形力大而不再是变形程度最大的区域,其应变硬化程度的增幅减小,相反此前试样内变形程度小的难变形区和小变形区因应变硬化程度小、其进一步变形的变形力小而产生较大的变形,其应变硬化程度的增幅大幅度增加。  相似文献   
3.
<正>热作模具钢在使用过程中受力复杂,经常承受急冷急热的温度变化和外加应力,易产生热疲劳、热磨损和开裂等失效,这对热作模具钢材料提出严格的要求,要求其同时具备高热强性和韧性、良好的耐磨性、高热疲劳强度、良好的抗氧化性及导热性等优异性能。DAC55是在DAC(SKD61)材料基础上改良而成的优质热作模具钢,在保留DAC材料优点的同时,也具有更好的耐热裂性,这主要是因为其成分具有低硅高钼的特点,  相似文献   
4.
将0. 46%含碳量(质量分数) 的石墨化碳素钢在万能材料试验机上进行室温压缩变形, 试验钢表现出良好的压缩变形性能.根据载荷-位移曲线的变化特点, 试验钢的压缩变形过程以位移7. 0 mm (对应相对压下量为58. 3%) 为节点分为两个阶段: 在位移≤7. 0 mm的压缩阶段, 载荷呈线性增加, 压缩试样的鼓度值逐渐增加而达到一个极大值(14. 6%), 压缩试样中心位置的维氏硬度增幅最大, 为38. 1 HV, 至位移7. 0 mm时试样端面径向伸长率的增幅为34%;而在位移 > 7. 0 mm的压缩阶段, 载荷呈指数增加, 压缩试样的鼓度值从极大值开始逐渐减小, 至位移为10. 72 mm时(相对压下量为89. 3%), 试样端面的径向伸长率相比于位移7. 0 mm时增加了83. 1%, 压缩试样的中心位置的维氏硬度增幅最小, 为32. 7 HV.上述试验数据表明, 在位移≤7. 0 mm的压缩过程中, 压缩试样内的三个不均匀变形区的位置与传统压缩模型一致, 但是当压缩变形进入位移 > 7. 0 mm的压缩过程中, 试样中心位置已不再是传统压缩模中变形程度最大的变形区了, 即在这个阶段试样中的3个不均匀变形区的变形程度发生了改变.正因这种不均匀变形区变形程度的改变导致了变形过程中载荷的急剧增加和鼓度值的减低.另外, 在压缩变形过程中, 三个不均匀变形区中石墨粒子的微观变形量总是高于铁素体基体, 其原因之一可以归结为石墨粒子中层与层之间容易于滑动的结果.   相似文献   
5.
采用Formastor-FⅡ全自动热膨胀相变仪测试了5Cr2NiMoVSi模具钢在不同冷却速度下的膨胀曲线,结合显微组织和硬度分析结果,绘制连续冷却转变(CCT)曲线,研究了材料的相变特性;通过热处理工艺试验研究了回火参数对材料力学性能的影响。结果表明,5Cr2NiMoVSi钢的过冷奥氏体具有较好的稳定性,连续冷却转变曲线大幅度右移;材料硬度和冷却速度关联较大,随着冷却速度增大,硬度迅速提高;临界冷却速度为0.4 ℃/s,马氏体硬度基本保持在640 HV以上;材料回火温度在550~590 ℃时,可获得不低于1628 MPa的抗拉强度,具有较好的回火稳定性。  相似文献   
6.
利用Gleeble-3500热模拟试验机对以铁素体+石墨为组织特征的石墨化碳钢进行了室温压缩变形试验。采用金相显微镜研究了应变速率(0. 01、0. 1、1 s~(-1))对钢的变形行为及组织演变特征的影响。结果表明:试验范围内应变速率对试验钢的压缩变形行为影响不大,即表现为在位移小于6. 5 mm(对应压下量54. 2%)的压缩过程中,不同应变速率下的压缩载荷均随着位移的增加而稳定增大,压缩试样的鼓度在6. 5 mm位移处达到最大值;而在位移大于6. 5 mm的压缩过程中,压缩载荷急剧增大,压缩试样的鼓度逐渐减小,研究认为这是此阶段压缩试样端面径向伸长率的急剧增大引起的。另外,在不同应变速率下的压缩变形过程中,试样的3个不均匀变形区(大变形区、自由变形区和难变形区)中的石墨粒子的变形量总大于铁素体基体的变形量,这是由简单六方晶体结构的石墨层与层之间易滑动所致。  相似文献   
7.
为了说明石墨化钢具有良好的温变形性能,本文在Gleeble-3500热模拟试验机上,对以铁素体、石墨为组织特征的碳质量百分比为0.46%石墨化钢圆柱试样φ6 mmx12 mm进行变形温度为550、600、650℃、应变速率为0.01、0.1、1s-1条件下的压缩温变形试验,并从变形试样的应力-应变及其内部显微组织2个方...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号