首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
冶金工业   2篇
  2018年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
结合烧结动力学模型和微观形貌观察,研究未掺杂和掺杂CuTa_2O_6的Ba(Zn_(1/3)Ta_(2/3))O_3陶瓷在1 270~1 520℃温度范围内的致密化过程和烧结动力学机理。结果表明:在1 150℃以上烧结,随温度升高,Ba(Zn_(1/3)Ta_(2/3))O_3的烧结机制从体积扩散向晶界扩散转变。掺杂0.25%CuTa_2O_6可显著加快Ba(Zn_(1/3)Ta_(2/3))O_3陶瓷的烧结致密化过程,在显著降低烧结温度的同时,可大幅缩短烧结时间并有效地促进B位的有序化。掺杂Ba(Zn_(1/3)Ta_(2/3))O_3陶瓷在1370℃烧结12h即可获得96%的相对密度,在1 370℃烧结12 h后的介电常数(εr)和品质因数(Q·f)分别约为29.4和985 35;相比较,未掺杂Ba(Zn_(1/3)Ta_(2/3))O_3在1 520℃烧结12 h的εr和Q·f分别只有27.4和68 147。掺杂Ba(Zn_(1/3)Ta_(2/3))O_3陶瓷经1 520℃烧结48 h的εr和Q·f分别约为28.2和103 131。  相似文献   
2.
利用经典热压模型,系统研究纳米氧化铝颗粒弥散强化铜的放电等离子烧结(SPS)致密化过程与机理。结果表明,放电等离子烧结初期,氧化铝弥散强化铜的致密化过程由晶界滑移和晶界扩散共同控制。随保温时间延长,烧结机制转变为由晶界滑移所主导。烧结后期致密化主要以塑性变形的方式进行。纳米氧化铝颗粒抑制了铜的烧结致密化,导致材料的密度降低。抑制机理为氧化铝颗粒阻碍晶界和位错运动,导致晶界滑移和塑性变形的激活能提高,从而增大致密化抗力。在外力和纳米氧化铝颗粒的共同作用下,塑性变形的主要形式为孪生。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号