首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
冶金工业   1篇
  2012年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The phase structure and hydrogen storage property of LaMg3.93Ni0.21 alloy were studied.XRD and SEM results exhibited that LaMg3.93Ni0.21 alloy consisted mainly of LaMg3,La2Mg17 and LaMg2Ni phases;after hydriding/dehydriding process,all the three phases transformed,La3H7 phase existed and the actual hydrogen absorption phases were Mg and Mg2Ni phases.Pressure-composition-temperature (P-C-T)measurement showed that the reversible hydrogen storage capacity of LaMg3.93Ni0.21 alloy was 2.63 wt.%,and the absorption time for reaching 90%of the storage capacity was 124 s at 523 K,and it was 1850 s for deabsorbing 90%of the maximum dehydrogen capacity.The hydriding process of LaMg3.93Ni0.21 alloy followed the nucleation and growth mechanisms.The enthalpy and entropy for hydriding and dehydriding reactions of the Mg phase in LaMg3.93Ni0.21 alloy were calculated to be-66.38±1.10 kJ/mol H2,-100.96±1.96 J/(K·mol)H2 and 68.50±3.87 kJ/mol H2,98.28±5.48 J/(K·mol)H2,respectively.A comparison of these data with those of MgH2(-74.50 kJ/mol H2,-132.30 J/K·mol H2)suggested that the hydride of LaMg3.93Ni0.21 alloy was less stable than MgH2.The existence of La hydride and synergetic effect of multiphase led to higher reversible hydrogen storage capacity and better kinetic property at lower temperature for LaMg3.93Ni0.21 alloy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号