首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   3篇
化学工业   3篇
冶金工业   3篇
  2020年   1篇
  2019年   4篇
  2017年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
基于自行设计的双极串联结晶器旋转电渣重熔炉,采用ASPEX全自动夹杂物分析仪研究了结晶器转速对M2电渣锭洁净度的影响。结果表明,不论结晶器是否旋转,电渣锭中的夹杂物组成基本不变,主要由Al2O3, Al2O3–MnS, Al2O3–SiO2–CaO–MnS, MgO–Al2O3–SiO2–CaO–MnO, MgO–Al2O3–SiO2–CaO–TiO2–MnS, Al2O3–SiO2–CaO–MnO–TiO2组成,其中以Al2O3, Al2O3–SiO2–CaO–MnO–TiO2和Al2O3–MnS数量最多。结晶器静止电渣重熔时,钢中的夹杂物数量较多,且存在50 ?m以上的大颗粒夹杂物,而结晶器转速为6和13 r/min时,夹杂物数量减少,大颗粒夹杂含量大大降低;转速增至19 r/min时,夹杂物数量及尺寸又进一步增加,同时钢中全氧含量、氮含量明显增加。电渣锭中大颗粒夹杂物得以去除的主要原因是结晶器旋转导致金属自耗电极末端的熔融层变薄、熔滴尺寸变小,渣–金接触面积增大,促进了夹杂物被熔渣去除;过快的转速会增加自耗电极氧化、减少渣–金接触时间,从而降低电渣重熔过程的精炼能力。  相似文献   
2.
为了改善M2高速钢中的碳化物分布,通过数值模拟详细分析了结晶器旋转对M2高速钢电渣重熔过程温度场、金属熔池形状的影响,并进一步通过实验室双极串联结晶器旋转电渣炉研究了旋转速率对M2高速钢电渣重熔过程的影响。采用扫描电镜观察并分析了结晶器旋转对电渣锭中碳化物形貌、分布的影响;采用小样电解萃取实验,分析了结晶器旋转速率对碳化物组成的影响。结果发现,随着结晶器旋转速率的增加,渣池的高温区从芯部向边部迁移,温度分布更加均匀;金属熔池的深度变浅,两相区的宽度收窄,从而导致局部凝固时间降低、二次枝晶间距减小。与此相对应,随着结晶器旋转速率的增加,M2电渣锭的渣皮更薄、更加均匀,结晶器对电渣锭的冷却强度更大,碳化物网格开始破碎、变薄,碳化物由片状改变为细小的棒状。X射线衍射分析表明,不论结晶器是否旋转,碳化物的类型始终不变,由M2C、MC和M6C组成,但是随旋转速率增加M2C含量增加,MC和M6C含量降低。碳化物组织得以改善的主要原因在于,结晶器旋转导致金属熔池深度降低、两相区宽度收窄,改善了凝固条件,减轻了元素偏析。   相似文献   
3.
H13热作模具钢属于中碳钢,钢中的Cr、Mo、V含量较高,因此钢在凝固过程中这些碳化物形成元素会偏聚析出大量的网状碳化物,经过热处理也很难完全消除,从而降低了钢的性能。实验室条件下研究了向H13钢中加入不同含量的镁对钢中碳化物的影响。结果表明:微量的镁能够改善H13钢中碳化物的形状和分布,使碳化物由粗大的网状转变成细小的短条状,经过镁处理后,碳化物呈细小均匀地分布在钢中。当加入0.004%的镁时,对碳化物的改质效果最好。镁在晶界处的偏聚是改善碳化物分布的主要原因,通过理论分析发现,在钢凝固冷却的过程中镁元素在晶界处的偏聚程度较高,从而阻碍了碳化物的生长,达到细化碳化物的目的。  相似文献   
4.
研究了自行设计的结晶器可旋转的电渣炉的旋转速率对M2高速钢凝固过程的影响,采用双极串联?电渣重熔方法,对不同结晶器转速下所制M2高速钢的二次枝晶、冷却速率、渗透率和渣皮厚度进行统计、计算和分析。结果表明,随结晶器转速增大,M2高速钢中心和边部的枝晶被打碎,结晶器转速越快,枝晶破碎越明显。结晶器转速由0增至19 r/min,M2高速钢在中心和边部的平均二次枝晶间距分别减小19.47%和25.23%,平均冷却速率分别增大97.01%和148.06%,平均渗透率分别降低34.94%和44.04%。结晶器旋转能将渣皮厚度降低40.41%,渣壳厚度的方差由0.163降至0.003,渣皮变得均匀,增大了金属熔池向外传热,使金属熔池变浅;另一方面,M2高速钢枝晶破碎、平均二次枝晶间距减小和渗透率降低使M2高速钢在凝固过程中的偏析得到控制,因而结晶器旋转可提高M2高速钢的凝固质量。  相似文献   
5.
摘要:在实验室条件下,向M2高速钢中加入Ni-Mg合金,对M2高速钢进行变质处理,研究其对高速钢一次碳化物的影响。采用电感耦合等离子体原子发射光谱法检测高速钢中的Mg含量,采取电解萃取的方法分析碳化物类型及相对含量的变化,在SEM-EDS扫描电镜下观察碳化物分布、尺寸、形貌的变化。结果表明,向M2高速钢中加入Mg能降低二次枝晶间距,细化碳化物的尺寸。Mg细化碳化物的效果随Mg含量的变化而变化。当Mg质量分数为8×10-6时效果最好,之后随着Mg含量的上升,效果变差。微量Mg细化碳化物的原因是Mg会向晶界偏聚,阻碍合金元素的扩散,从而抑制了碳化物的长大;同时Mg能对高速钢中的夹杂物改性,形成的大量细小、弥散的含Mg夹杂物可以诱导碳化物的析出,从而达到细化碳化物尺寸的效果。  相似文献   
6.
在实验室条件下向GCr15轴承钢中添加Ni?Mg合金进行镁合金化,研究了镁对液析碳化物的影响规律,用电感耦合等离子体原子发射光谱仪分析了钢中的镁含量,用光学显微镜统计了随机选取的100个视场中的液析碳化物出现的数量、最大尺寸及其平均值。结果表明,通过NiMg合金化,Mg能较顺利加入钢液中,在钢中的平均收率为9.20%。液析碳化物数量、最大尺寸、平均最大尺寸均随镁含量提高先减少后增加,镁含量为16?10?6(wt)时效果最佳。未添加镁时,液析碳化物呈大块状析出,加镁后仍以块状为主,但尺寸更细小。微量镁细化液析碳化物的主要原因在于,镁原子向晶界或相界偏聚,阻碍C和Cr等元素扩散,抑制液析碳化物长大;同时添加镁形成的大量细小MgS?MnS可诱导碳化物析出,使碳化物弥散化,也起到细化液析碳化物的效果。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号