首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
电工技术   7篇
化学工业   5篇
机械仪表   4篇
轻工业   2篇
一般工业技术   2篇
冶金工业   5篇
  2022年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2000年   1篇
  1999年   3篇
  1991年   1篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有25条查询结果,搜索用时 390 毫秒
1.
Glass fiber/carbon fiber/epoxy hybrid composite rods were investigated in this research for their resistance to excessive bending. The rods are presently being used as the load bearing component of the Aluminum Conductor Composite Core/Trapezoidal Wire (ACCC/TW™) design. The ACCC/TW™ design is one of the most serious candidates to replace the existing conductor designs based on steel and aluminum wires. The effects of mandrel size and thickness of the insulating glass fiber composite sheath on the axial compressive stress state during bending of the ACCC rod were numerically investigated by performing non-linear finite element analyses of the conductor wrapping process. In addition, two sets of compression experiments were performed on composite specimens in order to determine the ultimate compressive strength of the ACCC rod and of the carbon fiber composite alone. During the compression tests, acoustic emissions were monitored from the specimens to determine if a different failure process exists for the hybrid composite as opposed to a traditional uni-directional long fiber composite. Proof tests, and subsequent Scanning Electron Microscope (SEM) work of each type of composite were also performed to better understand the failure process. It was clearly demonstrated in this research that ACCC rods will be mechanically damaged by excessive bending over small diameter mandrels used for transportation and installation purposes. This work should be of great help to the manufacturers and potential users of the ACCC conductors around the world.  相似文献   
2.
This Account focuses on metal ion-ligand complexes of biological relevance and measurements of the bond dissociation energies (BDEs) of such species. These complexes yield thermochemistry that begins to provide a thermodynamic "vocabulary" for thinking quantitatively about the strength of interactions in biological systems. The method utilized is threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. Accurate determination of BDEs requires attention to many details of the experiments and data analysis, as outlined here. Trends in metal ion-ligand BDEs are examined as a function of the metal ion, ligand, and extent of ligation. We elucidate the importance of ion-dipole and ion-induced dipole interactions, chelation, conformation, tautomeric form, steric interactions, and electronic effects such as hybridization and promotion. Interactions of metal ions with nucleobases and amino acids are quantified and the effects of hydration on these values are explored for the amino acid systems. Although data limitations restrict the present discussion to monocations, the trends elucidated here should be relevant to multiply charged metal ions, for which data is forthcoming.  相似文献   
3.
The applicability of using flat composite plates and hollow core composite cylinders for moisture absorption testing of unidirectional glass/polymer composites used in high voltage composite (non-ceramic) insulators was examined. Two main issues were addressed in this work. First, the effect of specimen geometry (cylinders vs. plates) on moisture absorption by the composites was investigated both numerically and experimentally. Both classical Fickian and non-Fickian diffusions were considered. Subsequently, hollow core cylinders made up of ECR (low seed)-glass fibers and epoxy resin were tested for their high voltage properties under controlled moisture diffusion conditions. The specimens were exposed to warm, moist air and their high voltage properties were ascertained using a modified version of the ANSI test (standard C29.11 Section 7.4.2) for water diffusion electrical testing. It was found that the behavior of the hollow core cylinder and flat plate composite specimens subjected to moisture compared reasonably well experimentally and very well numerically. From the high voltage tests, a direct correlation was found between the amount of moisture that had been absorbed by the specimens and the amount of leakage current that was detected. It was shown that using the thin walled composite cylinders leakage currents could be predicted based on the amount of absorbed moisture in the insulator composites. The predictions can be made based on relatively short term moisture data even if the diffusion process in the composites is anomalous in nature with long times required for full saturation. After additional verifications, considering other composite systems, the hollow core cylinder testing under controlled moisture and high voltage conditions could become a screening test for selecting suitable glass/polymer composites for insulator applications.  相似文献   
4.
5.
Amphipathic, stimuli‐responsive water‐soluble polymers have been investigated as potential remediation agents for micellar enhanced ultrafiltration (MEUF). The systems represent divergent architectural types, a triblock ABA copolymer of PEO‐PPO‐PEO, an n‐octylamide modified poly(sodium maleate‐alt‐ethyl vinyl ether), and the transport protein, bovine serum albumin. Each type exhibits stimuli‐dependent microphase separation or domain formation in response to temperature, pH, and/or ionic strength changes. Segmental associations result in hydrophobic clusters resembling those present in small molecule surfactant micelles. The effects of such segmental aggregation on sequestration of a model hydrophobic foulant, p‐cresol, have been investigated using equilibrium dialysis. The favorable molar binding values, the large hydrodynamic dimensions of the stable polymer aggregates, and potential reversibility of foulant loading could have commercial utility in high flow rate, multiple‐pass remediation processes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2290–2300, 1999  相似文献   
6.
In this work, an improved version of a brittle fracture model, based on the formation of nitric acid in service through corona discharges, ozone, and moisture, is presented and is used to explain several different modes of brittle fracture. Similar to Part I, we refer throughout this article to the insulators as nonceramic insulators (NCIs). To prevent brittle fracture in-service, its causes must be first established. To prevent brittle fracture in-service, its causes must be first established.  相似文献   
7.
The influence of turbulence and convective fluid inertia in a water-lubricated journal bearing was investigated using two types of models: a “conventional” solution based on traditional lubrication theory (Reynolds equation) and a more rigorous computational fluid dynamics (CFD) program containing a full Navier-Stokes solution. The calculations reveal that turbulence accounts for around 50% of the load capacity in the water-lubricated bearing studied, highlighting the importance of accurate characterization of turbulence in such applications. Convective inertia, also referred to as transport inertia because it depends only on the spatial parameters within the film rather than time-dependent journal motions, was found to lower the static film pressures (load capacity) by about 6% compared to an inertialess solution.

Hydrodynamic pressures calculated by the conventional Reynolds solution were initially about 30% lower than those of the more rigorous CFD model for the water-lubricated bearing operating in the turbulent regime. The mesh spacing of the conventional model was refined and a method was developed to adjust the turbulence model within the Reynolds solution as a function of the pivot Reynolds number. These refinements brought the calculated bearing load capacities and power losses of the conventional Reynolds model into better agreement with those of the CFD model for a broad range operating conditions.  相似文献   

8.
9.
While pyrolysis of a polysiloxane precursor in argon typically produces a black amorphous Si–O–C ceramic containing “free” carbon (sp2 carbon), pyrolyzing the same precursor in hydrogen leads to a white amorphous ceramic with a negligible amount of sp2 carbon and a considerable hydrogen content. 29Si magic‐angle‐spinning nuclear magnetic resonance (MAS NMR) spectroscopy confirms the existence of very similar bonding environments of Si atoms in the Si–O–C network for both samples. In addition, 1H NMR spectroscopic measurements on both samples reveal that the hydrogen atoms are bonded mainly to carbon. For the thermodynamic analysis, the enthalpies of formation with respect to the most stable components (SiO2, SiC, C) of the black‐and‐white Si–O–C samples obtained after the pyrolysis at 1100°C are determined using high‐temperature oxidative drop‐solution calorimetry in a molten oxide solvent. The white ceramic is 6 kJ/g‐atom more stable in enthalpy than the black one. Although the role of hydrogen in the thermodynamic stability of the white sample remains ambiguous, the thermodynamic findings and structural analysis suggest that the existence of sp2‐bonded carbon in the amorphous network of polymer derived Si–O–C ceramics does not provide additional thermodynamic stability to the ceramic.  相似文献   
10.
This paper describes water diffusion into and electrical testing of unidirectional glass reinforced polymer (GRP) composite rods used as load bearing components in high voltage composite (non-ceramic) insulators. The tests were performed following ANSI standard C29.11 Section 7.4.2 that can be used to evaluate electrical properties of composites. The unidirectional composite rod materials based on either E-glass or ECR-glass fibers with modified polyester, epoxy and vinyl ester resins were investigated. Two types of ECR-glass fibers were considered, namely high and low seed (voids). The effects of composite surface sandblasting, mechanical pre-loading and nitric acid exposure on the electrical properties of the composites were studied. In addition to the required data of the ANSI standard, the specimen mass gain was also measured after boiling for 100 h. Most importantly, there was no correlation found between the mass gain and the leakage current for different composites. The materials with high seed ECR-glass fibers had much higher leakage currents and they absorbed less moisture than the composites based on either the low seed ECR-glass fibers or E-glass fibers. It was shown in this work that different types of sandblasting, as well as mechanical preloading with and without acid exposure had a negligible effect on the leakage currents and water mass gain of the composite specimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号