首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
金属工艺   1篇
无线电   2篇
一般工业技术   2篇
冶金工业   1篇
  2023年   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Carbon free TaNx films were deposited by plasma enhanced atomic layer deposition (PEALD) using a combination of pentakis(dimethylamino)Ta (PDMAT) and either N2 or NH3 plasma. Good linearity and saturation behavior were observed for the TaNx films grown with NH3 plasma while non-ideal saturation features were observed for the films grown with N2 plasma. The thermal stability of the TaNx films could be improved by reducing the pressure of the reactants and by increasing the plasma exposure time. The TaNx films deposited using N2 plasma exhibit better diffusion barrier properties than the films deposited using NH3 plasma.  相似文献   
2.
Ru thin films were sequentially deposited onto TaN (5 nm) by plasma enhanced atomic layer deposition using Ru(EtCp)2 and NH3 as precursors. The effect of growth temperature on the electrical resistivity and morphology of the Ru films were studied. It was found that the Ru films can achieve a low resistivity of 14 µΩ cm and a low root-mean-square roughness at a growth temperature of 270 °C. The thickness of the underlying TaN film was found to affect the Ru film growth. The oxidation of the very thin TaN film was correlated with the island growth of Ru. Ex and in-situ X-ray diffraction was employed to verify the copper diffusion barrier properties of a Ru (3 nm)/TaN (5 nm) bi-layer structure.  相似文献   
3.
TaCN films were deposited using atomic layer deposition (ALD) using PDMAT and H2/Ar plasma. Calculations based on density functional theory (DFT) indicate a high energy barrier and a low reaction energy for reducing the +5 Ta oxidation state in the PDMAT precursor by using pure H radicals. Through the assistance of Ar radicals, low resistivity of TaCN films of 230 μΩ cm could be deposited by using H2/Ar plasma. By employing in situ X-ray diffraction during annealing, the activation energy for Cu diffusion through the TaCN barrier was evaluated at 1.6 eV.  相似文献   
4.
Alumina was deposited on a non-woven polyester fiber substrate using both thermal and plasma enhanced atomic layer deposition (ALD). The textile was confined inside a one dimensional test structure. The coverage of the ALD film on the nonwoven as a function of depth in the test structure was determined by energy dispersive X-ray spectroscopy (EDX). A model is introduced which links the precursor transport in the nonwoven (transmission, reflection and deposition) with the nonwoven properties (density, fiber surface area, density of surface sites). The experimental results are compared to simulations of the coverage profile. It is shown that longer precursor exposure times result in deposition deeper inside the nonwoven. However, the majority of precursor molecules entering the nonwoven leave the test structure without contributing to film growth. ALD from TMA and oxygen plasma had a very limited penetration into the nonwoven because of radical recombination. This effect is relevant for plasma treatment of fibrous materials in general.  相似文献   
5.

This work aims to describe the effect of magnesium on the microstructure, phase composition, amount of undesirable Ti2Ni phase, martensitic transformation, mechanical properties, and corrosion resistance of NiTi alloy. To minimize the quantity of Ti2Ni phase, we use the magnesium as an element with high affinity to oxygen, because this phase is stabilized by oxygen. Various quantities of magnesium (1, 3, and 5 wt pct) were tested. Self-propagating high-temperature synthesis (SHS) was used as a production method of the alloys. The samples prepared by SHS were pulverized by a vibrating mill, and the obtained powders were used for consolidation by means of spark plasma sintering. Results showed a significant reduction of the content of undesirable Ti2Ni phase by the addition of magnesium. Further, magnesium increased corrosion resistance and yield strength.

  相似文献   
6.
Metal nanoparticle (NP) sintering is a prime cause of catalyst degradation, limiting its economic lifetime and viability. To date, sintering phenomena are interrogated either at the bulk scale to probe averaged NP properties or at the level of individual NPs to visualize atomic motion. Yet, “mesoscale” strategies which bridge these worlds can chart NP populations at intermediate length scales but remain elusive due to characterization challenges. Here, a multi-pronged approach is developed to provide complementary information on Pt NP sintering covering multiple length scales. High-resolution scanning electron microscopy (HRSEM) and Monte Carlo simulation show that the size evolution of individual NPs depends on the number of coalescence events they undergo during their lifetime. In its turn, the probability of coalescence is strongly dependent on the NP's mesoscale environment, where local population heterogeneities generate NP-rich “hotspots” and NP-free zones during sintering. Surprisingly, advanced in situ synchrotron X-ray diffraction shows that not all NPs within the small NP sub-population are equally prone to sintering, depending on their crystallographic orientation on the support surface. The demonstrated approach shows that mesoscale heterogeneities in the NP population drive sintering and mitigation strategies demand their maximal elimination via advanced catalyst synthesis strategies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号