首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   1篇
化学工业   14篇
金属工艺   29篇
机械仪表   4篇
建筑科学   4篇
矿业工程   1篇
能源动力   1篇
轻工业   6篇
无线电   7篇
一般工业技术   14篇
冶金工业   5篇
原子能技术   3篇
自动化技术   14篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2014年   8篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   10篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1992年   2篇
  1991年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
We consider the problem of recovering the initial data (or initial state) of infinite-dimensional linear systems with unitary semigroups. It is well-known that this inverse problem is well posed if the system is exactly observable, but this assumption may be very restrictive in some applications. In this paper we are interested in systems which are not exactly observable, and in particular, where we cannot expect a full reconstruction. We propose to use the algorithm studied by Ramdani et al. in (Automatica 46:1616–1625, 2010) and prove that it always converges towards the observable part of the initial state. We give necessary and sufficient condition to have an exponential rate of convergence. Numerical simulations are presented to illustrate the theoretical results.  相似文献   
2.
3.
Thermal spray process is a technique of coating manufacturing implementing a wide variety of materials and processes. This technique is characterized by up to 150 processing parameters influencing the coating properties. The control of the coating quality is needed through the consideration of a robust methodology that takes into account the parameter interdependencies, the process variability and offers the ability to quantify the processing parameter-process response relationships. The aim of this work is to introduce a new approach based on artificial intelligence responding to these requirements. A detailed procedure is presented considering an artificial neural network (ANN) structure which encodes implicitly the physical phenomena governing the process. The implementation of such a structure was coupled to experimental results of an optic sensor controlling the powder particle fusion state before the coating formation. The optimization steps were discussed and the predicted results were compared to the experimental ones allowing the identification of the control factors.  相似文献   
4.
Offline robot trajectory generation is now often used for thermal spray applications, especially for complex design parts, requiring enhanced trajectories. This technique allows decreasing the downtime of the thermal spray cell and insures the generation of optimized trajectories. Heat transfers caused by thermal spray increase the workpiece temperature during the coating application. This temperature acts directly on the resulting thermal stresses after cooling of the part down to the ambient temperature. In this study, a coupling was developed between the robot trajectory and computation of the thermal history of the workpiece during the spray operation. The method is based on the storage of the real robot trajectory (i.e., accurate in time) in a text file, and reading of this file with a C programming performed with ANSYS/FLUENT commercial code which allows computing the displacement of the thermal sources according to the trajectory and solving the transient heat conservation equation during the torch displacement. The contributions of the impinging plasma jet and the molten particle jet are taken into account in the model.  相似文献   
5.
Six formulations containing diacrylate monomers (from 89 to 92.5% (w/w)) as well as a phosphonated methacrylate monomer (from 1 to 10% (w/w)) were prepared. All formulations were UV-cured and the corrosion performance of the resulting coatings applied onto a steel substrate was assessed by electrochemical impedance spectroscopy (EIS). It was first shown that the coatings containing phosphonic acid methacrylate (MAPC1(OH)2) instead of methacrylate phosphonic dimethyl ester (MAPC1) presented higher corrosion protection related to the strong adhesive properties of phosphonic acid on the metal substrate. A minimum MAPC1(OH)2 content of 2.5% was determined to provide the highest impedance values (best efficiency). Then, a new bio-based compound, i.e. phosphonic acid-bearing oleic acid (phosphonated fatty acid), was synthesized and added as an inhibitor to the formulations. In the presence of this compound, the corrosion protection was notably improved. The beneficial effect of phosphonated fatty acid was explained by its inhibitive action at the steel/coating interface and by the improvement of the barrier properties.  相似文献   
6.
Solid immersion microscopy, similar to liquid immersion microscopy, extends the diffraction limit by filling the object space with a high refractive index material, such as glass (index of refraction n=1.5-2), sapphire (n/spl sim/1.8), and semiconductor materials (n/spl sim/3), which shrink the wavelength of light. But solid immersion technique can achieve significantly higher spatial resolution since the refractive indices of available solids can be much higher than those of liquids (n=1.3-1.5). Besides high spatial resolution, solid immersion microscopy also possesses all the good properties of far-field imaging, such as high transmission efficiency and parallel imaging capability, which make it outstanding among beyond-the-diffraction-limit optical imaging techniques. In this paper, we discuss, from an experimental point of view, the resolution limit of solid immersion microscopy and the implementation of such technique in various applications.  相似文献   
7.
“PostDock”, a new visualization tool for the analysis and comparison of molecular docking results is described. It processes a docking results database and displays an interactive pseudo-3D snapshot of multiple ligand docking poses such that their docking energies and docking poses are visually encoded for rapid assessment. The docking energies are represented by a transparency scale whereas the docking poses are encoded by a color scale. The applications of PostDock for ligand–protein docking and for a novel molecular design approach termed “reverse-docking” are presented.  相似文献   
8.
A better understanding of MOX fuel in-pile behaviour requires a very detailed characterization of the Pu distribution in the pellet before and after irradiation. Electron probe microanalysis (EPMA) can be used to determine the distributions of chemical elements with a spatial resolution of 1 μm. This paper describes the development of X-ray microanalysis techniques to produce semi-quantitative ‘maps’ of plutonium concentrations in order to rapidly characterize large areas of the fuel microstructure (1 mm2) with reasonable accuracy. A new segmentation technique based on statistical compatibility is then proposed, so as to finely describe the MIMAS MOX fuel microstructure. Two materials were finely characterized to demonstrate the reliability of this new method. In each case, the results demonstrate the good and reliable accuracy of this new characterization methodology. The analysis method used is currently able to identify three so-called phases (Pu-rich agglomerates, a coating phase and uranium-rich agglomerates), as well as to quantify the plutonium distribution and the plutonium content of these three phases. The impact of the fabrication process on the microstructure can be seen both in the surface distribution variations of the plutonium and in the local plutonium content variations.  相似文献   
9.
In this study, YSZ coatings were deposited on different substrate materials (stainless steel and aluminum) using suspension plasma spray technique. The effects of substrate properties (material, surface topology, temperature, and thickness) on the formation of coatings were investigated. The results showed that, with the identical spray parameters, the porosity is higher for the coatings deposited on aluminum than that on stainless steel due to the high thermal transfer ability of the former substrate material. The SEM results revealed that the microstructure of as-prepared coatings could be tailored from the vertical cracked structure to the columnar structure by increasing the substrate surface roughness and their formation mechanisms were discussed. The substrate preheating temperature has an influence on the microstructure of the coatings, especially in the interfacial region. Increasing the substrate temperature is an effective means for reducing the interface defects and for improving the adhesion of the coatings. With the increase in the substrate thickness, the quantity of the vertical cracks in the coatings is reduced and their width becomes narrower.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号