首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
一般工业技术   5篇
冶金工业   1篇
自动化技术   7篇
  2015年   1篇
  2011年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Age-related changes in selective attention, inhibitory efficiency, and the ability to form new associations suggest that older adults may have greater difficulty with more complex and less comprehensible symbols. We examined comprehension of symbols varying in terms of ratings of familiarity, complexity, and comprehensibility, by younger (aged 18-35) and older (aged 55-70) adults. It was found that older adults have greater difficulty than younger adults in comprehending warning symbols and that accident scenario training improves comprehension. Regression analyses indicated that familiarity and comprehensibility were important in determining performance on the pre-training comprehension test by both younger and older adults. However, training eliminated the effects of stimulus characteristics for younger adults, while older adults' comprehension continued to be significantly influenced by comprehensibility. We suggest that symbol design incorporates cues to knowledge to facilitate the linkage between new knowledge (i.e. the warning symbol) and relevant knowledge in long-term memory. Statement of Relevance: Symbol characteristics play an important role in age-related differences in warning symbol comprehension. To optimise comprehension by older adults, symbols should have a clear relationship with areal-world referent. Alternatively, symbol design could incorporate cues to knowledge to facilitate the linkage between new knowledge and relevant knowledge in long-term memory.  相似文献   
2.
OBJECTIVE: We conducted a set of experiments to examine the utility of several different uni- and multimodal collision avoidance systems (CASs) on driving performance of young and older adult drivers in a high-fidelity simulator. BACKGROUND: Although previous research has examined the efficacy of different CASs on collision avoidance, there has been a dearth of studies that have examined such devices in different driving situations with different populations of drivers. METHOD: Several different CAS warnings were examined in varying traffic and collision configurations both without (Experiment 1a) and with (Experiment 2) a distracting in-vehicle task. RESULTS: Overall, collision avoidance performance for both potential forward and side object collisions was best for an auditory/visual CAS, which alerted drivers using both modalities. Interestingly, older drivers (60-82 years of age) benefited as much as younger drivers from the CAS, and sometimes they benefited more. CONCLUSION: These data suggest that CASs can be beneficial across a number of different driving scenarios, types of collisions, and driver populations. APPLICATION: These results have important implications for the design and implementation of CASs for different driver populations and driving conditions.  相似文献   
3.
OBJECTIVE: The performance costs associated with cell phone use while driving were assessed meta-analytically using standardized measures of effect size along five dimensions. BACKGROUND: There have been many studies on the impact of cell phone use on driving, showing some mixed findings. METHODS: Twenty-three studies (contributing 47 analysis entries) met the appropriate conditions for the meta-analysis. The statistical results from each of these studies were converted into effect sizes and combined in the meta-analysis. RESULTS: Overall, there were clear costs to driving performance when drivers were engaged in cell phone conversations. However, subsequent analyses indicated that these costs were borne primarily by reaction time tasks, with far smaller costs associated with tracking (lane-keeping) performance. Hands-free and handheld phones revealed similar patterns of results for both measures of performance. Conversation tasks tended to show greater costs than did information-processing tasks (e.g., word games). There was a similar pattern of results for passenger and remote (cell phone) conversations. Finally, there were some small differences between simulator and field studies, though both exhibited costs in performance for cell phone use. CONCLUSION: We suggest that (a) there are significant costs to driver reactions to external hazards or events associated with cell phone use, (b) hands-free cell phones do not eliminate or substantially reduce these costs, and (c) different research methodologies or performance measures may underestimate these costs. APPLICATION: Potential applications of this research include the assessment of performance costs attributable to different types of cell phones, cell phone conversations, experimental measures, or methodologies.  相似文献   
4.
In-vehicle technologies (IVTs) create additional tasks for the driver. To the extent that these devices degrade driving performance, there will be safety concerns. This study examines the effects of display clutter from overlay, display separation, and modality on driving and IVT task performance. In a fixed-base simulator, 22 drivers drove different routes and responded to infrequent, unexpected road hazards while engaging in a phone number task presented by different displays. Visual displays were located on a head-up (overlaid on the visual horizon or adjacently, just above the vehicle hood) or head-down display (HDD) located near the midconsole. Alternatively, digits were presented auditorily. In general, there were no differences in performance for the adjacent and overlay displays; however, there were costs associated with the HDD and auditory display for some measures. In particular, responses to hazard events were slowed when drivers used the HDD. Overall, the adjacent display best supported performance on all relevant tasks. Potential applications of this research include the design of IVTs with respect to location and modality.  相似文献   
5.
A modified version of the flicker technique to induce change blindness was used to examine the effects of time constraints on decision-making accuracy at intersections on a total of 62 young (18-25 years), middle-aged (26-64 years), young-old (65-73 years), and old-old (74+ years) drivers. Thirty-six intersection photographs were manipulated so that one object (i.e., pedestrian, vehicle, sign, or traffic control device) in the scene would change when the images were alternated for either 5 or 8 s using the modified flicker method. Young and middle-aged drivers made significantly more correct decisions than did young-old and old-old drivers. Logistic regression analysis of the data indicated that age and/or time were significant predictors of decision performance in 14 of the 36 intersections. Actual or potential applications of this research include driving assessment and crash investigation.  相似文献   
6.
Humans often make inflated or erroneous estimates of their own ability or performance. Such errors in calibration can be due to incomplete processing, neglect of available information or due to improper weighing or integration of the information and can impact our decision-making, risk tolerance, and behaviors. In the driving context, these outcomes can have important implications for safety. The current paper discusses the notion of calibration in the context of self-appraisals and self-competence as well as in models of self-regulation in driving. We further develop a conceptual framework for calibration in the driving context borrowing from earlier models of momentary demand regulation, information processing, and lens models for information selection and utilization. Finally, using the model we describe the implications for calibration (or, more specifically, errors in calibration) for our understanding of driver distraction, in-vehicle automation and autonomous vehicles, and the training of novice and inexperienced drivers.  相似文献   
7.
In 2 experiments, the authors examined how characteristics of a simulated traffic environment and in-vehicle tasks impact driver performance and visual scanning and the extent to which a computational model of visual attention (SEEV model) could predict scanning behavior. In Experiment 1, the authors manipulated task-relevant information bandwidth and task priority. In Experiment 2, the authors examined task bandwidth and complexity, while introducing infrequent traffic hazards. Overall, task priority had a significant impact on scanning; however, the impact of increasing bandwidth was varied, depending on whether the relevant task was supported by focal (e.g., in-vehicle tasks; increased scanning) or ambient vision (e.g., lane keeping; no increase in scanning). The computational model accounted for approximately 95% of the variance in scanning across both experiments. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
8.
There are a number of different strategies to mitigate the effects of fatigue in transportation and other occupational settings. Many are centered on regulatory or organizational approaches, such as work scheduling restriction and employer screening practices. While these generally benefit safety and productivity, there are clearly limitations to these approaches. Technologies that objectively detect or predict operator fatigue may be used to effectively complement or even supplant organizational or regulatory approaches. Over the past decade and a half, there have been considerable advances in relevant technologies, including onboard devices that monitor drivers’ state or level of performance as well as devices that predict fatigue in advance of a work cycle or trip. In this paper, we discuss the challenges and opportunities for technological approaches to fatigue management, beginning with a discussion of the “ideal” system, followed by some of the general issues and limitations of current technologies. We also discuss some of the critical and outstanding issues related to the human interaction with these systems, including user acceptance and compliance. Finally, we discuss future directions in next generation technology for fatigue management.  相似文献   
9.
In the first part of the reported research, 12 instrument-rated pilots flew a high-fidelity simulation, in which air traffic control presentation of auditory (voice) information regarding traffic and flight parameters was compared with advanced display technology presentation of equivalent information regarding traffic (cockpit display of traffic information) and flight parameters (data link display). Redundant combinations were also examined while pilots flew the aircraft simulation, monitored for outside traffic, and read back communications messages. The data suggested a modest cost for visual presentation over auditory presentation, a cost mediated by head-down visual scanning, and no benefit for redundant presentation. The effects in Part 1 were modeled by multiple-resource and preemption models of divided attention. In the second part of the research, visual scanning in all conditions was fit by an expected value model of selective attention derived from a previous experiment. This model accounted for 94% of the variance in the scanning data and 90% of the variance in a second validation experiment. Actual or potential applications of this research include guidance on choosing the appropriate modality for presenting in-cockpit information and understanding task strategies induced by introducing new aviation technology.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号