首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
无线电   20篇
冶金工业   4篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  1997年   2篇
  1995年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
A novel bidirectional complementary metal-oxide-semiconductor (CMOS) transceiver for chip-to-chip optical interconnects operating at 2.5 Gb/s is proposed, which shares the common block of a receiver and a transmitter on a single chip. The share of the common block of two circuits makes it possible to save 55% or 20% of power dissipation, depending on the operating mode. The chip in 0.18-/spl mu/m CMOS technology occupies an area of 0.82/spl times/0.82 mm/sup 2/, 70% of the total area of a typical unshared transceiver chip. The transmitting and receiving modes of operation show -3-dB bandwidths of 2.2 and 2.4 GHz and electrical isolations of -28 and -40 dB, respectively.  相似文献   
2.
This paper describes low-temperature flip-chip bonding for both optical interconnect and microwave applications. Vertical-cavity surface-emitting laser (VCSEL) arrays were flip-chip bonded onto a fused silica substrate to investigate the optoelectronic characteristics. To achieve low-temperature flip-chip bonding, indium solder bumps were used, which had a low melting temperature of 156.7/spl deg/C. The current-voltage (I-V) and light-current (L-I) characteristics of the flip-chip bonded VCSEL arrays were improved by Ag coating on the indium bump. The I-V and L-I curves indicate that optical and electrical performances of Ag-coated indium bumps are superior to those of uncoated indium solder bumps. The microwave characteristics of the solder bumps were investigated by using a flip-chip-bonded coplanar waveguide (CPW) structure and by measuring the scattering parameter with an on-wafer probe station for the frequency range up to 40 GHz. The indium solder bumps, either with or without the Ag coating, provided good microwave characteristics and retained the original characteristic of the CPW signal lines without degradation of the insertion and return losses by the solder bumps.  相似文献   
3.
We propose an advanced structure of optical subassembly (OSA) for packaging of the vertical-cavity surface-emitting laser (VCSEL) array, using (111) facet mirror of the V-groove ends formed in a silicon optical bench (SiOB) and angled fiber apertures. The feature of our OSA can provide a low optical crosstalk between neighboring channels, a low feedback reflection, and a large misalignment tolerance along the V-groove. We describe the optimized design of fiber angle, VCSEL position, and fiber position. The fabricated OSA structure consists of 12 channels of angled fiber array, 54.7/spl deg/ V-grooves, Au-coated mirrors on (111) end facet of the V-grooves, and flip-chip-bonded VCSEL array on a SiOB. In this structure, the beam emitted from the VCSEL is deflected at the 54.7/spl deg/ mirror of (111) end facet and propagated into the angled fiber. The angled fiber array was polished by 57/spl deg/. Fabricated OSAs showed a coupling efficiency of 30%-50% that is 25 times larger than that obtained from an OSA with a vertically flat fiber array. Our OSA showed large misalignment tolerance of about 90 /spl mu/m along the longitudinal direction in the V-groove. We fabricated a parallel optical transmitter module using the OSA and demonstrated 12 channels /spl times/2.5 Gb/s data transmission with a clear eye diagram.  相似文献   
4.
An architecture of a passively assembled optical platform is suggested for a chip-to-chip optical interconnection system. The platform is constructed using all-fiber media for the optical paths: a fiber-embedded optical printed-circuit board (OPCB) and 90-bent fiber connector. The passive assembling was achieved by employing the guide pins/holes of commercialized ferrules in the optical link between the OPCB, 90-bent fiber connector, and the transmitter/receiver (Tx/Rx) module. From this interconnection scheme, a low total optical loss of was obtained. From an assembled platform with 10 Gb/s/ch 4 ch Tx/Rx modules, a 7-Gb/s/ch data transmission was demonstrated with a bit error rate below , involving the optical and electrical crosstalk arisen in the whole channel operation.  相似文献   
5.
In this paper, a new architecture for a chip-to-chip optical interconnection system is demonstrated that can be applied in a waveguide-embedded optical printed circuit board (PCB). The experiment used 45/spl deg/-ended optical connection rods as a medium to guide light paths perpendicularly between vertical-cavity surface-emitting lasers (VCSELs), or photodiodes (PDs) and a waveguide. A polymer film of multimode waveguides with cores of 100/spl times/65 /spl mu/m was sandwiched between conventional PCBs. Via holes were made with a diameter of about 140 /spl mu/m by CO/sub 2/-laser drilling through the PCB and the waveguide. Optical connection rods were made of a multimode silica fiber ribbon segment with a core diameter of 62.5 and 100 /spl mu/m. One end of the fiber segment was cut 45/spl deg/ and the other end 90/spl deg/ by a mechanical polishing method. These fiber rods were inserted into the via holes formed in the PCB, adjusting the insertion depth to locate the 45/spl deg/ end of rods near the waveguide cores. From this interconnection system, a total coupling efficiency of about -8 dB was achieved between VCSELs and PDs through connection rods and a 2.5 Gb/s /spl times/ 12-ch data link demonstrated through waveguides with a channel pitch of 250 /spl mu/m in the optical PCB.  相似文献   
6.
As discussed in this paper, a practical optical backplane system was demonstrated, using a waveguide-embedded optical backplane board, processing boards, and optical slots for board-to-board interconnection. A metal optical bench was used as a packaging die for the optical devices and the integrated circuit chips in both the transmitter and the receiver processing boards. The polymer waveguide was produced by means of a hot-embossing technique and was then embedded following a conventional lamination processes. The average propagation loss of these waveguides was approximately 0.1 dB/cm at 850 nm. The dimension and optical properties of the waveguide in an optical backplane board were unchanged after lamination. As connection components between transmitter/receiver processing boards and an optical backplane board, optical slots were used for easy and repeatable insertion and extraction of the boards with a micrometer-scale precision. A 1/spl times/4 850-nm vertical-cavity surface-emitting laser array was used with 2 dBm of output power for the transmitter and a p-i-n photodiode array for the receiver. This paper successfully demonstrates 8 Gb/s of data transmission between the transmitter processing board and the optical backplane board.  相似文献   
7.
We propose a passively assembled chip-to-chip optical interconnection system using fiber-optic technology. To demonstrate the system, three components were prepared: a fiber-embedded optical printed-circuit board (OPCB), optical transmitter/receiver modules, and 90/spl deg/-bent fiber connectors. All components were assembled using precise guide pins and holes so that complete passive alignment was achieved in the OPCB. An optical link of 5-Gb/s/ch signals with a total link loss of -1.5 dB has been successfully demonstrated from the assembled system.  相似文献   
8.
A system-on-packaging (SoP) with an electroabsorption modulator (EAM) for a 60 GHz band radio-over-fiber (RoF) link is described. The system consists of an EAM device, a microstrip filter, and a low noise amplifier (LNA). The microstrip filter was used to achieve impedance matching between the EAM device and the LNA and to reject the local oscillator (LO) frequency of the heterodyne system. The frequency response and the effect of the EAM bias voltage were measured for a simple RF/optical link. A 60 GHz band RoF link with 2.5 GHz intermediate frequency (IF) was prepared to measure the transmission characteristics of the 16 QAM data.  相似文献   
9.
We report the transverse mode characteristics of InGaAs-GaAs vertical-cavity surface-emitting lasers (VCSEL's) buried in a low-temperature-deposited amorphous GaAs (a-GaAs) layer. The maximum current maintaining a stable fundamental transverse mode is increased by the antiguide effect of the a-GaAs clad with a high refractive index. For 10- and 15-μm-diameter devices, we attain a stable single-mode emission over a wide range of current. The antiguide effects and transverse mode profiles in vertical cavity lasers buried in the high refractive index clad are calculated using a two-dimensional beam propagation method  相似文献   
10.
A new pump wavelength of 1545 nm for the long-wavelength-band erbium-doped fibre amplifier shows higher power conversion efficiency than the conventional 1480 nm pump for high power wavelength division multiplexing input signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号