首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3956篇
  免费   91篇
  国内免费   7篇
电工技术   24篇
综合类   3篇
化学工业   421篇
金属工艺   63篇
机械仪表   83篇
建筑科学   25篇
矿业工程   3篇
能源动力   69篇
轻工业   124篇
水利工程   15篇
石油天然气   11篇
无线电   200篇
一般工业技术   479篇
冶金工业   2158篇
原子能技术   16篇
自动化技术   360篇
  2023年   25篇
  2022年   48篇
  2021年   76篇
  2020年   51篇
  2019年   53篇
  2018年   82篇
  2017年   70篇
  2016年   76篇
  2015年   50篇
  2014年   85篇
  2013年   161篇
  2012年   82篇
  2011年   97篇
  2010年   96篇
  2009年   91篇
  2008年   111篇
  2007年   73篇
  2006年   57篇
  2005年   49篇
  2004年   51篇
  2003年   39篇
  2002年   44篇
  2001年   31篇
  2000年   33篇
  1999年   102篇
  1998年   760篇
  1997年   420篇
  1996年   256篇
  1995年   132篇
  1994年   143篇
  1993年   134篇
  1992年   37篇
  1991年   32篇
  1990年   29篇
  1989年   28篇
  1988年   18篇
  1987年   29篇
  1986年   23篇
  1985年   33篇
  1984年   15篇
  1983年   21篇
  1982年   10篇
  1981年   17篇
  1980年   28篇
  1979年   8篇
  1978年   10篇
  1977年   38篇
  1976年   68篇
  1975年   6篇
  1974年   5篇
排序方式: 共有4054条查询结果,搜索用时 328 毫秒
1.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
2.
Wireless Personal Communications - The orthogonal frequency division multiplexing (OFDM) is the most encouraging multi-carrier modulation system chosen for the high data rates but the objective is...  相似文献   
3.
4.

Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.

  相似文献   
5.
The current research work presents a facile and cost–effective co-precipitation method to prepare doped (Co & Fe) CuO and undoped CuO nanostructures without usage of any type of surfactant or capping agents. The structural analysis reveals monoclinic crystal structure of synthesized pure CuO and doped-CuO nanostructures. The effect of different morphologies on the performance of supercapacitors has been found in CV (cyclic voltammetry) and GCD (galvanic charge discharge) investigations. The specific capacitances have been obtained 156 (±5) Fg?1, 168(±5) Fg?1 and 186 (±5) Fg?1 for CuO, Co-doped CuO and Fe-doped CuO electrodes, respectively at scan rate of 5 mVs?1, while it is found to be 114 (±5) Fg?1, 136 (±5) Fg?1 and 170 (±5) Fg?1 for CuO, Co–CuO and Fe–CuO, respectively at 0.5 Ag-1 as calculated from the GCD. The super capacitive performance of the Fe–CuO nanorods is mainly attributed to the synergism that evolves between CuO and Fe metal ion. The Fe-doped CuO with its nanorods like morphology provides superior specific capacitance value and excellent cyclic stability among all studied nanostructured electrodes. Consequently, it motivates to the use of Fe-doped CuO nanostructures as electrode material in the next generation energy storage devices.  相似文献   
6.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
7.
Technical Physics Letters - Using the method of DC magnetron sputtering, nonstructured amorphous metal coatings of Zr75Pd25 composition were obtained with an average deposition rate of 1.3 nm/s at...  相似文献   
8.
9.
Characteristic mineral assemblage and special features of the composition of Au and Ag sulfides of gold-silver deposits have been established. The forms of the occurrence of Au and Ag in the minerals of the early and last stages have been analyzed. The conditions for the formation of uytenbogaardtite and petrovskaite in supergene and low-temperature hydrothermal processes have been considered. A thermodynamic model explaining their genesis in the oxidation zones is presented.  相似文献   
10.
IMP dehydrogenase (IMPDH) catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+; the enzyme is activated by K+. This reaction is the rate-limiting step in de novo guanine nucleotide biosynthesis. In order to identify functionally important residues in IMPDH, including those involved in substrate and K+ binding, we have mutated 11 conserved Asp and Glu residues to Ala in Escherichia coli IMPDH. The values of kcat, Km, and Ki for GMP, XMP, mizoribine 5'-monophosphate (MMP), and beta-methylene-tiazofurin adenine dinucleotide (TAD) were determined. Five of these mutations caused a significant change (>/=10-fold) in one of these parameters. The Asp248 --> Ala mutation caused 100-fold decrease in the value of kcat and a 25-fold increase in the value of Kii for TAD; these observations suggest that Asp248 is in the NAD+ binding site. The Asp338 --> Ala mutation caused a 600-fold decrease in the value of kcat, but only a 5-10-fold increase in the values of Km for IMP and Kis for IMP analogs, suggesting that Asp338 may be involved in acid-base catalysis as well as IMP binding. The remaining three residues, Asp13, Asp50, and Glu469, appear to be involved in K+ activation; these residues may be ligands at one or more K+ binding sites. Interestingly, changes in the values of Ki for MMP correlate with changes in kcat/KmKm of IMPDH, while no such correlation is observed for GMP, XMP, and TAD. This observation indicates that MMP is a transition state analog for the IMPDH reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号