首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   11篇
  国内免费   2篇
化学工业   114篇
金属工艺   5篇
机械仪表   4篇
建筑科学   5篇
能源动力   3篇
轻工业   15篇
无线电   1篇
一般工业技术   16篇
冶金工业   4篇
自动化技术   4篇
  2022年   39篇
  2021年   39篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   10篇
  2012年   10篇
  2011年   6篇
  2010年   10篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
1.
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.  相似文献   
2.
A series of binary blends of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and polytetrahydrofuran (PTHF), characterized by similar average molecular weights, with selected fatty acids (capric acid, lauric acid, myristic acid, palmitic acid, and stearic acid) were prepared by melt mixing. Differential scanning calorimetry was applied to characterize the phase transitions of melting and crystallization, and a synergistic effect was found to occur for PEO/fatty acid blends, as evidenced by the values of the enthalpy of the phase transition. This effect was probably due to hydrogen bonding between PEO and the fatty (carboxylic) acids, which facilitated the formation of crystalline structures; an analysis of IR spectroscopy data showed a shift in the absorption bands of OH groups. The morphology development of the PEO/carboxylic acid blends, as observed with polarizing light microscopy, could be described as spherulitic growth with spontaneous selection of the lamellar thickness. The textures of the individual fibrils, consisting of stacks of several tens of lamellae corresponding to PPO and PTHF, were less regular than the texture of PEO and showed large macroscopic heterogeneity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 861–870, 2003  相似文献   
3.
Drying-induced stresses in elastic and viscoelastic saturated materials   总被引:1,自引:0,他引:1  
The paper presents a theoretical analysis of stresses generated during convective drying of kaolin, based on elastic and viscoelastic models. The equations of these models were solved analytically for a cylindrically shaped sample; the distribution and evolution of the radial and circumferential stresses are illustrated in diagrams. The acoustic emission method was used in experimental tests for identification on line of the time period during which the stresses reach their maximal values. A better correlation has been found between the experimental tests and the theoretical predictions obtained on the basis of the viscoelastic model.  相似文献   
4.
The activity of NOx storage-reduction (NSR) catalysts is greatly reduced by sulfur poisoning, caused by the SO2 present in the exhaust stream. Desorption of sulfur species from poisoned NSR catalysts occurs at temperatures in excess of 600 °C using reducing atmospheres and conventional heating. In this work, microwave (MW) heating has been used to promote desulfurization of poisoned NSR catalysts. The experiments were carried out by heating the catalyst with MW radiation and using hydrogen as the reducing gas. Desorption of H2S at 200 °C was observed. Desorption at even lower temperatures (150 °C) was observed when water was introduced to the system. In the presence of water, sulfur species desorbed as both H2S and SO2. An overall reduction of sulfur species of about 60% was obtained. The use of MW heating proves to be an efficient way to achieve regeneration of poisoned NSR catalysts.  相似文献   
5.
Dioecious species differ in the pattern and intensity of male and female reproductive investments. We aimed to determine whether female shoots deprived of generative buds show biochemical features, indicating their less-pronounced reproductive effort. For this purpose, the same branches of mature Taxus baccata females were deprived of generative organs. In the second and third years of the experiment, measurements were made in every season from the control and bud-removed shoots of females and control males. Bud removal caused an increase in nitrogen concentration almost to the level detected in the needles of male specimens, but only in current-year needles. Moreover, differences between male and control female shoots were present in the C:N ratio and increment biomass, but they disappeared when bud removal was applied to females. Additionally, between-sex differences were observed for content of phenolic compounds, carbon and starch, and SLA, independent of the female shoot reproductive effort. The study revealed that nitrogen uptake in seeds and arils may explain the lower nitrogen level and consequently the lower growth rate of females compared to males. At the same time, reproduction did not disturb carbon level in adjacent tissues, and two hypotheses explaining this phenomenon have been put forward.  相似文献   
6.
MAGE (melibiose-derived advanced glycation end-product) is the glycation product generated in the reaction of a model protein with melibiose. The in vivo analog accumulates in several tissues; however, its origin still needs explanation. In vitro MAGE is efficiently generated under dry conditions in contrast to the reaction carried in an aqueous solvent. Using liquid chromatography coupled with mass spectrometry, we analyzed the physicochemical properties and structures of myoglobin glycated with melibiose under different conditions. The targeted peptide analysis identified structurally different AGEs, including crosslinking and non-crosslinking modifications associated with lysine, arginine, and histidine residues. Glycation in a dry state was more efficient in the formation of structures containing an intact melibiose moiety (21.9%) compared to glycation under aqueous conditions (15.6%). The difference was reflected in characteristic fluorescence that results from protein structural changes and impact on a heme group of the model myoglobin protein. Finally, our results suggest that the formation of in vitro MAGE adduct is initiated by coupling melibiose to a model myoglobin protein. It is confirmed by the identification of intact melibiose moieties. The intermediate glycation product can further rearrange towards more advanced structures, including cross-links. This process can contribute to a pool of AGEs accumulating locally in vivo and affecting tissue biology.  相似文献   
7.
The serious clinical course of SARS-CoV-2 infection is usually accompanied by acute kidney injury (AKI), worsening prognosis and increasing mortality. AKI in COVID-19 is above all a consequence of systemic dysregulations leading to inflammation, thrombosis, vascular endothelial damage and necrosis. All these processes rely on the interactions between innate immunity elements, including circulating blood cells, resident renal cells, their cytokine products, complement systems, coagulation cascades and contact systems. Numerous simultaneous pathways of innate immunity should secure an effective host defense. Since they all form a network of cross-linked auto-amplification loops, uncontrolled activation is possible. When the actions of selected pathways amplify, cascade activation evades control and the propagation of inflammation and necrosis worsens, accompanied by complement overactivity and immunothrombosis. The systemic activation of innate immunity reaches the kidney, where the damage affecting single tubular cells spreads through tissue collateral damage and triggers AKI. This review is an attempt to synthetize the connections between innate immunity components engaged in COVID-19-related AKI and to summarize the knowledge on the pathophysiological background of processes responsible for renal damage.  相似文献   
8.
Although light-emitting diode (LED) technology has extended the research on targeted photomorphogenic, physiological, and biochemical responses in plants, there is not enough direct information about how light affects polyamine metabolism. In this study, the effect of three spectral compositions (referred to by their most typical characteristic: blue, red, and the combination of blue and red [pink] lights) on polyamine metabolism was compared to those obtained under white light conditions at the same light intensity. Although light quality induced pronounced differences in plant morphology, pigment contents, and the expression of polyamine metabolism-related genes, endogenous polyamine levels did not differ substantially. When exogenous polyamines were applied, their roborative effect were detected under all light conditions, but these beneficial changes were correlated with an increase in polyamine content and polyamine metabolism-related gene expression only under blue light. The effect of the polyamines on leaf gene expression under red light was the opposite, with a decreasing tendency. Results suggest that light quality may optimize plant growth through the adjustment of polyamine metabolism at the gene expression level. Polyamine treatments induced different strategies in fine-tuning of polyamine metabolism, which were induced for optimal plant growth and development under different spectral compositions.  相似文献   
9.

Quenching and partitioning (Q&P) and a novel combined process of hot straining (HS) and Q&P (HSQ&P) treatments have been applied to a TRIP-assisted steel in a Gleeble®3S50 thermomechanical simulator. The heat treatments involved intercritical annealing at 800 °C and a two-step Q&P heat treatment with a partitioning time of 100 seconds at 400 °C. The “optimum” quench temperature of 318 °C was selected according to the constrained carbon equilibrium (CCE) criterion. The effects of high-temperature deformation (isothermal and non-isothermal) on the carbon enrichment of austenite, carbide formation, and the strain-induced transformation to ferrite (SIT) mechanism were investigated. Carbon partitioning from supersaturated martensite into austenite and carbide precipitation were confirmed by means of atom probe tomography (APT) and scanning transmission electron microscopy (STEM). Austenite carbon enrichment was clearly observed in all specimens, and in the HSQ&P samples, it was significantly greater than in Q&P, suggesting an additional carbon partitioning to austenite from ferrite formed by the deformation-induced austenite-to-ferrite transformation (DIFT) phenomenon. By APT, the carbon accumulation at austenite/martensite interfaces was observed, with higher values for HSQ&P deformed isothermally (≈ 11 at. pct), when compared with non-isothermal HSQ&P (≈ 9.45 at. pct) and Q&P (≈ 7.6 at. pct). Moreover, a local Mn enrichment was observed in a ferrite/austenite interface, indicating ferrite growth under local equilibrium with negligible partitioning (LENP).

  相似文献   
10.
The high polymerization temperature of acrylic bone cements used in hip replacement implantation may cause thermal necrosis of surrounding tissues. In order to reduce the polymerization temperature, acrylic bone cement has been modified with a biocompatible polymeric phase‐change material (PCM) based on poly(ethylene glycol) (PEG) of different molecular weights and stabilized with potato starch. Structural and morphological studies were performed, and the thermal and mechanical properties were investigated. The incorporation of PEG‐based PCM led to a decrease in the polymerization temperature of bone cement from 70 °C for unmodified cement to 58 °C for modified cement. Modified cement materials were stable in incubation tests, although acoustic analysis data revealed a decrease in propagation speed after incubation, which indicates formation of material defects (pores, cracks, voids, etc.) due to water activity. However, in the regeneration process, these defects can be filled by freshly grown bone tissue leading to better incorporation of bone cement replacements into tissue. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43898.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号