首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
化学工业   11篇
金属工艺   5篇
能源动力   4篇
轻工业   2篇
无线电   6篇
一般工业技术   8篇
冶金工业   5篇
原子能技术   1篇
自动化技术   5篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1990年   1篇
  1969年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
Many works have been achieved for analyzing images with a multiscale approach. In this paper, an intrinsic and nonlinear multiscale image decomposition is proposed, based on partial differential equations (PDEs) and the image frequency contents. Our model is inspired from the 2D empirical mode decomposition (EMD) for which a theoretical study is quite nonexistent, mainly because the algorithm is based on heuristic and ad hoc elements making its mathematical study hard. This work has three main advantages. Firstly, we prove that the 2D sifting process iterations are consistent with the resolution of a nonlinear PDE, by considering continuous morphological operators to build local upper and lower envelopes of the image extrema. In addition to the fact that now differential calculus can be performed on envelopes, the introduction of such morphological filters eliminates the interpolation dependency that also terribly suffers the method. Also, contrary to former 2D empirical modes, precise mathematical definition for a class of functions are now introduced thanks to the nonlinear PDE derived from the consistency result, and their characterization on the basis of Meyer spaces. Secondly, an intrinsic multiscale image decomposition is introduced based on the image frequency contents; the proposed approach almost captures the essence and philosophy of the 2D EMD and is linked to the well known Absolutely Minimizing Lipschitz Extension model. Lastly, the proposed multiscale decomposition allows a reconstruction of images. The filterbank capability of the new multiscale decomposition algorithm is shown both on synthetic and real images, and results show that our proposed approach improves a lot on the 2D EMD. Moreover, the complexity of the proposed multiscale decomposition is very reduced compared to the 2D EMD by avoiding the surface interpolation approach, which is the core of all 2D EMD algorithms and is very time consuming. For that purpose also, our work will then be a great benefit; especially, in higher dimension spaces.  相似文献   
2.
3.
The effect of Na2CO3 on the cloud point in Na2CO3/surfactant/brine was investigated using two series of nonionic surfactants, C13EO x and C17EO x . The cloud point, T cp, was found to decrease linearly with increasing Na2CO3 concentration. This was attributed to Na+ and particularly to CO3 2?salting-out effect. The slope a = dTcp/d[Na2CO3] became more and more negative as the degree of ethoxylation is increased, suggesting that the higher the number of ethylene oxide (EO) groups the stronger is the cloud point depression for a given increment in Na+and CO3 2?ions in solution. This was also illustrated by the linear variation of ΔT cp = T cp,0 ? T cp,[Na2CO3] with the surfactant degree of ethoxylation.  相似文献   
4.
In this study, wear and friction behavior of two based-composites from the Ti-Si-C system, (40 wt% TiC; 28 wt% Ti5Si3; 17 wt% Ti3SiC2) and (18 wt% TiC; 26 wt% Ti5Si3; 41 wt% Ti3SiC2) reinforced by 15 wt% of large size SiC (100-150 µm) particles were investigated. The four-phase composites exhibited approximatively the same friction coefficient (µ ~ 0.9) under high loads (10 N and 7 N). The composite with high Ti3SiC2 showed higher wear rate values by one order of magnitude. However, under 1 N, the composite with high TiC content showed a higher running-in period and a lower steady state µ value (0.37 after 1000 m sliding distance). Scanning electron microscopy, Energy Dispersive X-Ray and Raman spectroscopy analysis of the worn surfaces of the two composites revealed that oxidation was the dominant wear mechanism. The oxidation process and the removal kinetics of the oxides during sliding controlled the tribological behavior of the composites. The influence of processing variables on microstructures development and wear mechanisms of the composites is discussed.  相似文献   
5.
B. Zaid  D. Saidi  S. Hadji 《Corrosion Science》2008,50(7):1841-1847
Effects of pH solution and chloride (Cl) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy.The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting Epit and corrosion Ecor potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits.Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6).  相似文献   
6.
This study aims at gaining a better understanding of the microstructural features that control the mechanical and the tribological performances of WC–12 wt.% Co coatings under High Velocity Oxygen Fuel (HVOF) spraying conditions. This paper looks at the influences of the HVOF process parameters for WC–12Co material on the microstructural and the tribological behaviours of the coatings. The correlation between the coating microstructure and the wear behaviour is investigated by observing and analysing the microstructure and by studying the friction moment using enhanced statistical tool based on neural computations. According to the experimental and the numerical results, it has been shown that the spray parameters affect the phase composition, hardness and porosity of HVOF sprayed WC–12Co coatings and the correlations with HVOF process parameters are fully predictable in the steady-state regime.  相似文献   
7.
This study aims to corroborate experimental studies in mechanical alloying by theoretical studies, particularly the calculation of the contact temperature at the impact point of the balls, basing on the mathematical model of a compact powder between two colliding balls. Indeed, within this study, we show the influence of some geometrical, dynamic, and thermophysical parameters on the variation in the contact temperature of balls and Al and Ti powders inside a vial of planetary ball mill.  相似文献   
8.
The interaction of a foreign particle that is suspended in the melt with a planar solidifying interface may induce the onset of morphological instabilities provided that its distance from the interface falls below a critical value. This distance, which is of the order of the particle’s radius, depends on the governing processing and physical parameters. When the particle is in nearcontact with the solid-liquid interface, the disjoining pressure in the melt film that separates the particle from the interface influences the interaction. We derive an expression for the film thickness at which rupture occurs. The critical film thickness, which depicts the competition between the stabilizing influence of surface tension and thermal gradients and the destabilizing influence of the intermolecular forces, varies as (Sh)1/4, where Sh is the Scheludko number that is modifed by the imposed thermal gradients. We note the existence of a critical value for the particle’s radius below which the stabilizing effects are primarily due to surface tension and above which they are due to the thermal gradients.  相似文献   
9.
The aim of this work was to apply an experimental design to formulate a stable depilatory cream at ambient temperature. A preliminary study was performed to optimize the most accurate operating parameters, which are then used for the determination of the rheological properties. Long-term stability of the emulsion formulations was investigated to obtain the optimal region of each factor. An experimental design using response surface modelling was then applied and emulsion stability was estimated by introducing new characteristic parameters correlated with the experimental results. An optimal region characterized with high stability was found and further explored to verify the effectiveness and tolerance of depilation. As part of the optimized process, the main effects of the formulation ingredients were also investigated.  相似文献   
10.
Herein we study the infiltration behavior of Ti and Cu fillers into a Ti2AlC/Ti3AlC2MAX phase composites using a TIG-brazing process. The microstructures of the interfaces were investigated by scanning electron microscopy and energy dispersive spectrometry. When Ti2AlC/Ti3AlC2 comes into contact with molten Ti, it starts decomposing into TiCx, a Ti-richandTi3AlC; when in contact with molten Cu, the resulting phases are Ti2Al(Cu)C, Cu(Al), AlCu2Ti and TiC. In the presence of Cu at approximately 1630 °C, a defective Ti2Al(Cu)C phase was formed having a P63/mmc structure. Ti3AlC2 MAX phase was completely decomposed in presence of Cu or Ti filler-materials. The decomposition of Ti2AlC to Ti3AlC2 was observed in the heat-affected zone of the composite. Notably, no cracks were observed during TIG-brazing of Ti2AlC/Ti3AlC2 composite with Ti or Cu filler materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号