首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
机械仪表   2篇
冶金工业   2篇
  2021年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.

Iron aluminide (FeAl) inter-metallic compounds are potential candidates for structural applications at high temperatures owing to their superior corrosion resistance, high temperature oxidation, low density and inexpensive material cost. However, the presence of defects can lead to reduction in the strength and ductility of FeAl-based materials. Here we present a density functional theory (DFT) study of the effect of the presence of defects including Fe and Al vacancies as well as H dopants at the substitutional and interstitial sites at a \(\sum {{{{5}\left[ {{21}0} \right]} \mathord{\left/ {\vphantom {{{5}\left[ {{21}0} \right]} {\left( {\overline{1}\overline{2}0} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\overline{1}\overline{2}0} \right)}}}\) FeAl grain boundary focusing on the energetics. The plane wave pseudopotential code Vienna Ab initio Simulation Package (VASP) in the generalized gradient approximation (GGA) is used to carry out the computations. The formation energy calculations showed that intrinsic defects such as Fe and Al vacancies probably form at the GB, indicated by their negative formation energies. These vacancies can further form defect complexes with H impurities, indicated by lowered formation energies, compact bonds and charge gain of H atoms. Electronic structure analysis showed stronger hybridization of 1s orbitals of H with Fe and Al atoms, which leads to the stabilization of these defects resulting in degradation of material strength.

  相似文献   
3.
Adapting atomic force microscopy for cell biology   总被引:11,自引:0,他引:11  
We present details of our AFM modifications to produce an adaptable imaging system for the cell biologist. We have designed and validated a new inverted microscope interface and a scan head with increased Z-range, based upon the TopoMetrix Explorer AFM. We have utilised these changes, together with home-made glass ball cantilevers, to obtain topographical information over cells with large Z-dimension (over 15 microm high), and mapped calcitonin-calcitonin receptor binding forces in living bone cells. We conclude that modified AFM can be used to evaluate intermolecular events in living cells and that this approach will ensure general application to the study of receptor-ligand interactions under truly physiological conditions.  相似文献   
4.
In this study, atomic force microscopy (AFM) was used to mechanically stimulate primary osteoblasts. In response to mechanical force applied by the AFM, the indented cell increased its intracellular calcium concentration. The material properties of the cell could be estimated and the membrane strains calculated. We proceeded to validate this technique experimentally and a 20% error was found between the predicted and the measured diameter of indentation. We also determined the strain distributions within the cell that result from AFM indentation using a simple finite element model. This enabled us to formulate hypotheses as to the mechanism through which cells may sense the applied mechanical strains. Finally, we report the effect of the Poisson ratio and the cell thickness on the strain distributions. Varying the Poisson ratio did not change the order of magnitude of the strains; whereas the cellular thickness dramatically changed the order of magnitude of the cellular strains. We conclude that AFM can be used for controlled mechanical stimulation of osteoblasts and that cellular strain distributions can be computed with a good accuracy when the cell is indented in its highest part.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号