首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学工业   2篇
冶金工业   14篇
自动化技术   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Studies on odor mixture perception suggest that although odor components can often be identified in mixtures, mixtures can also give rise to novel perceptual qualities that are not present in the components. Using an olfactory habituation task, the authors evaluated how the perceptual similarity between components in a mixture affects the perceptual quality of the mixture itself. Rats perceived binary mixtures composed of similar components as different from their 2 components, whereas binary mixtures composed of dissimilar components were perceived as very similar to their components. Results show that for both types of mixtures, pretraining to Component A reduces subsequent learning about Component B in rats trained in the presence of A. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
2.
Dopaminergic modulation of cortical activity has been implicated in the formation of reward associations. There is abundant evidence for dopaminergic effects on olfactory processing. Using an olfactory discrimination task, the authors show that D? and D? dopamine receptors can regulate rats' olfactory discrimination capacities and that the effects of receptor activation functionally oppose one another. Injection of either the D? agonist SKF 38393 (10 mg/kg) or the D? antagonist spiperone (0.62 mg/kg) facilitated the discrimination of similar odorants but had no effect on the discrimination of dissimilar odorants, whereas both the D, antagonist SCH 23390 (0.025 mg/kg) and the D? agonist quinpirole (0.2 mg/kg) significantly impaired rats' ability to discriminate similar and dissimilar odorants. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
3.
Computational modeling of neural substrates provides an excellent theoretical framework for the understanding of the computational roles of neuromodulation. In this review, we illustrate, with a large number of modeling studies, the specific computations performed by neuromodulation in the context of various neural models of invertebrate and vertebrate preparations. We base our characterization of neuromodulations on their computational and functional roles rather than on anatomical or chemical criteria. We review the main framework in which neuromodulation has been studied theoretically (central pattern generation and oscillations, sensory processing, memory and information integration). Finally, we present a detailed mathematical overview of how neuromodulation has been implemented at the single cell and network levels in modeling studies. Overall, neuromodulation is found to increase and control computational complexity.  相似文献   
4.
Measurements of thermal diffusivity were carried out with semicrystalline and amorphous polymers stretched in the solid and in the molten state to different elongations. For semi-crystalline materials two regions in the curves of the diffusivity versus the elongation can be detected. The change occurs at an elongation of 1.4 for the polymers stretched in the solid state and at an elongation of 3 for the polymers stretched in the molten state. For amorphous polystyrene the shape of the curves of thermal diffusivity versus elongation also depends on the mode of stretching. Along with thermal diffusivity measurements, wide angle X-ray scattering investigations were also performed and give explanations for the differences in thermal behavior.  相似文献   
5.
The olfactory system is capable of detecting odorants at very low concentrations. Physiological experiments have demonstrated odorant sensitivities down to the picomolar range in preparations from the sensory epithelium. However, the contemporary model for olfactory signal transduction provides that odorants bind to olfactory receptors with relatively low specificity and consequently low affinity, making this detection of low-concentration odorants theoretically difficult to understand. We employ a computational model to demonstrate how olfactory sensory neuron (OSN) sensitivity can be tuned by modulation of receptor-effector coupling and/or by other mechanisms regulating spare receptor capacity, thus resolving this conundrum. The EC10-90 intensity tuning ranges (ITRs) of whole olfactory glomeruli and postsynaptic mitral cells are considerably broader than the commensurate ITRs of individual OSNs. These data are difficult to reconcile with certain contemporary hypotheses that convergent OSNs in mammals exhibit a homogeneous population of olfactory receptors and identical tuning for odor stimuli. We show that heterogeneity in spare receptor capacities within a convergent OSN population can increase the ITR (EC10-90) of a convergent population of OSNs regardless of the presence or absence of a diversity of receptor expression within the population. The modulation of receptor-effector coupling has been observed in OSNs; other mechanisms for cellular regulation of spare receptor capacity are also highly plausible (e.g., quantitative regulation of the relative expression levels of receptor and effector proteins). We present a model illustrating that these processes can underlie both how OSNs come to exhibit high sensitivity to odorant stimuli without necessitating increased ligand-receptor binding affinities or specificities and how a population of convergent OSNs could exhibit a broader concentration sensitivity than its individual constituent neurons, even given a population expressing identical odorant receptors. The regulation of spare receptor capacity may play an important role in the olfactory system's ability to reliably detect low odor concentrations, discriminate odor intensities, and segregate this intensity information from representations of odor quality.  相似文献   
6.
Habituation is a simple form of memory, yet its neurobiological mechanisms are only beginning to be understood in mammals. In the olfactory system, the neural correlates of habituation at a fast experimental timescale involving very short intertrial intervals (tens of seconds) have been shown to depend on synaptic adaptation in olfactory cortex. In contrast, behavioral habituation to odorants on a longer timescale with intertrial intervals of several minutes depends on processes in the olfactory bulb, as demonstrated by pharmacological studies. We here show that behavioral habituation to odorants on this longer timescale has a neuronal activity correlate in the olfactory bulb. Spiking responses of mitral cells in the rat olfactory bulb adapt to, and recover from, repeated odorant stimulation with 5-min intertrial intervals with a time course similar to that of behavioral habituation. Moreover, both the behavioral and neuronal effects of odor habituation require functioning N-methyl-d-aspartic acid receptors in the olfactory bulb. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
7.
Norepinephrine has been proposed to influence signal-to-noise ratio within cortical structures, but the exact cellular mechanisms underlying this influence have not been described in detail. Here we present data on a cellular effect of norepinephrine that could contribute to the influence on signal-to-noise ratio. In brain slice preparations of the rat piriform (olfactory) cortex, perfusion of norepinephrine causes a dose-dependent suppression of excitatory synaptic potentials in the layer containing synapses among pyramidal cells in the cortex (layer Ib), while having a weaker effect on synaptic potentials in the afferent fiber layer (layer Ia). Effects of norepinephrine were similar in dose-response characteristics and laminar selectivity to the effects of the cholinergic agonist carbachol, and combined perfusion of both agonists caused effects similar to an equivalent concentration of a single agonist. In a computational model of the piriform cortex, we have analyzed the effect of noradrenergic suppression of synaptic transmission on signal-to-noise ratio. The selective suppression of excitatory intrinsic connectivity decreases the background activity of modeled neurons relative to the activity of neurons receiving direct afferent input. This can be interpreted as an increase in signal-to-noise ratio, but the term noise does not accurately characterize activity dependent on the intrinsic spread of excitation, which would more accurately be described as interpretation or retrieval. Increases in levels of norepinephrine mediated by locus coeruleus activity appear to enhance the influence of extrinsic input on cortical representations, allowing a pulse of norepinephrine in an arousing context to mediate formation of memories with a strong influence of environmental variables.  相似文献   
8.
Some controversy still exists as to how binary odorant mixtures are behaviorally perceived, despite many studies aimed at understanding this phenomenon. Binary mixture perception by rodents is a first step in elucidating how more complex odor blends may be perceived. Research thus far has examined how the degree of component similarity, olfactory receptor overlap, relative concentration of components, and even olfactory enrichment affect the behavioral perception of binary mixtures. These studies have aimed to categorize binary mixtures into 1 of 3 rigid categories, but often the results conflict as to which category a particular mixture belongs. In the present article, the authors used a habituation/discrimination paradigm to determine whether rats' perception of one component of a binary mixture of either perceptually similar or dissimilar components changed when the concentration of both components was varied together. The authors found that perception of a binary mixture changed with changing component concentration, such that one binary mixture could be categorized differently depending on component intensity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
9.
Dopaminergic modulation affects odor detection thresholds and olfactory discrimination capabilities in rats. The authors show that dopamine D? receptor modulation affects odor discrimination capabilities in a manner similar to the modulation of stimulus intensity. Performance in a simultaneous odor discrimination task was systematically altered by manipulations of both odorant concentration and D? receptor activation (agonist quinpirole, 0.025-0.5 mg/kg; antagonist spiperone, 0.5 mg/kg). Rats' discrimination performance systematically improved at higher odor concentrations. Blockade of D? receptors improved performance equivalent to increasing odor concentration by 2 log units, whereas activation of D? receptors reduced odor discrimination performance in a dose-dependent manner. Bulbar dopamine release may serve a gain control function in the olfactory system, optimizing its sensitivity to changes in the chemosensory environment. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
10.
Spatial patterns of glomerular activity in the vertebrate olfactory bulb and arthropod antennal lobe reflect an important component of first-order olfactory representation and contribute to odorant identification. Higher concentration odor stimuli evoke broader glomerular activation patterns, resulting in greater spatial overlap among different odor representations. However, behavioral studies demonstrate results contrary to what these data might suggest: Honeybees are more, not less, able to discriminate among odorants applied at higher concentrations. Using a computational model of the honeybee antennal lobe, the authors show that changes in synchronization patterns among antennal lobe projection neurons, as observed electrophysiologically, could parsimoniously underlie these observations. The results suggest that stimulus salience, as defined behaviorally, is directly correlated with the degree of synchronization among second-order olfactory neurons. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号