首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
无线电   1篇
一般工业技术   3篇
冶金工业   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  1998年   1篇
  1997年   1篇
  1988年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Since blood is a biologic product, it is unlikely that the risk for transfusion-transmitted infection will ever be reduced to zero. The approach to emerging infections associated with transfusion of blood and blood products includes assessing the transmissibility of the agent by this route; developing effective prevention strategies, including screening tests and donor deferral policies; improving viral and bacterial inactivation procedures; and surveillance for known, as well as emerging and poorly characterized, transfusion-transmitted agents. Vigilance is needed to help ensure proper balance between safety and the availability of blood. Finally, vigilance needs to extend to the developing world, where the basic elements to reduce transfusion-transmitted infections and systems of disease surveillance are often not available.  相似文献   
2.
Metal oxide nanoparticles have marked antibacterial activity. The toxic effect of these nanoparticles, such as those comprised of ZnO, has been found to occur due to an interaction of the nanoparticle surface with water, and to increase with a decrease in particle size. In the present study, we tested the ability of ZnO nanoparticles to affect the viability of the pathogenic yeast, Candida albicans (C. albicans). A concentration-dependent effect of ZnO on the viability of C. albicans was observed. The minimal fungicidal concentration of ZnO was found to be 0.1 mg ml(-1) ZnO; this concentration caused an inhibition of over 95% in the growth of C. albicans. ZnO nanoparticles also inhibited the growth of C. albicans when it was added at the logarithmic phase of growth. Addition of histidine (a quencher of hydroxyl radicals and singlet oxygen) caused reduction in the effect of ZnO on C. albicans depending on its concentration. An almost complete elimination of the antimycotic effect was achieved following addition of 5 mM of histidine. Exciting the ZnO by visible light increased the yeast cell death. The effects of histidine suggest the involvement of reactive oxygen species, including hydroxyl radicals and singlet oxygen, in cell death. In light of the above results it appears that metal oxide nanoparticles may provide a novel family of fungicidal compounds.  相似文献   
3.
The internship year in clinical psychology training has been described as a "professional adolescence." During this time the trainee is involved in consolidating a professional identity through the integration of previous experiences and the application of knowledge to clinical work in a novel situation. Through presentation of personal experiences and observations of a clinical psychology intern, elements of the internship year are compared with the identity process of adolescence. Particular emphasis is placed on issues of competency as they arise throughout the internship year. Aspects of the internship experience that facilitate development of a professional identity are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
4.
To date, there is still a lack of definite knowledge regarding the interaction of CuO nanoparticles with bacteria and the possible permeation of the nanoparticles into bacterial cells. This study was aimed at shedding light on the size‐dependent (from the microscale down to the small nanoscale) antibacterial activity of CuO. The potent antibacterial activity of CuO nanoparticles was found to be due to ROS‐generation by the nanoparticles attached to the bacterial cells, which in turn provoked an enhancement of the intracellular oxidative stress. This paradigm was confirmed by several assays such as lipid peroxidation and reporter strains of oxidative stress. Furthermore, electron microscopy indicated that the small nanoparticles of CuO penetrated the cells. Collectively, the results reported herein may reconcile conflicting concepts in the literature concerning the antibacterial mechanism of CuO nanoparticles, as well as highlight the potential for developing sustainable CuO nanoparticles‐based devices for inhibiting bacterial infections.  相似文献   
5.
The interaction of the opportunistic fungus Cryptococcus neoformans with swine microglia was studied in vitro in the presence and absence of anti-CD14 monoclonal antibodies. In the absence of anti-CD14 antibodies, 36% of microglia had phagocytized nonopsonized, encapsulated cryptococci after 2 hr incubation (effector-to-target ratio, 1:50). Preincubation of microglia with anti-CD14 antibodies resulted in a 63% reduction of phagocytosis. These findings suggest that CD14 receptors facilitate uptake of nonopsonized C, neoformans by resident macrophages within the brain.  相似文献   
6.
An innovative study aimed at understanding the influence of the particle size of ZnO (from the microscale down to the nanoscale) on its antibacterial effect is reported herein. The antibacterial activity of ZnO has been found to be due to a reaction of the ZnO surface with water. Electron‐spin resonance measurements reveal that aqueous suspensions of small nanoparticles of ZnO produce increased levels of reactive oxygen species, namely hydroxyl radicals. Interestingly, a remarkable enhancement of the oxidative stress, beyond the level yielded by the ZnO itself, is detected following the antibacterial treatment. Likewise, an exposure of bacteria to the small ZnO nanoparticles results in an increased cellular internalization of the nanoparticles and bacterial cell damage. An examination of the antibacterial effect is performed on two bacterial species: Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive). The nanocrystalline particles of ZnO are synthesized using ultrasonic irradiation, and the particle sizes are controlled using different solvents during the sonication process. Taken as a whole, it is apparent that the unique properties (i.e., small size and corresponding large specific surface area) of small nanometer‐scale ZnO particles impose several effects that govern its antibacterial action. These effects are size dependent and do not exist in the range of microscale particles.  相似文献   
7.
Zinc‐doped copper oxide nanoparticles are synthesized and simultaneously deposited on cotton fabric using ultrasound irradiation. The optimization of the processing conditions, the specific reagent ratio, and the precursor concentration results in the formation of uniform nanoparticles with an average size of ≈30 nm. The antibacterial activity of the Zn‐doped CuO Cu0.88Zn0.12O in a colloidal suspension or deposited on the fabric is tested against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) bacteria. A substantial enhancement of 10 000 times in the antimicrobial activity of the Zn–CuO nanocomposite compared to the pure CuO and ZnO nanoparticles (NPs) is observed after 10 min exposure to the bacteria. Similar activities are observed against multidrug‐resistant bacteria (MDR), (i.e., Methicillin‐resistant S. aureus and MDR E. coli) further emphasizing the efficacy of this composite. Finally, the mechanism for this enhanced antibacterial activity is presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号