首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学工业   5篇
轻工业   1篇
无线电   1篇
一般工业技术   8篇
冶金工业   1篇
原子能技术   1篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
  1984年   1篇
排序方式: 共有17条查询结果,搜索用时 8 毫秒
1.
The reaction of the PCP-type complex Pd(Me){2,6-(iPr2PCH2)2C6H3}( 3 ) with phenyl iodide results in the formation of Pd(I){2,6-(iPr2PCH2)2C6H3} ( 5 ), methyl iodide, toluene, and biphenyl. Formation of Pd(Ph){2,6-(iPr2PCH2)2C6H3}( 4 ) is observed during the reaction by 31P NMR. Reaction of 4 with aryl iodides results in the formation of 5 and Ph–Ph, Ph–Ar, and Ar–Ar, products indicative of a radical reaction. Under pseudo-first-order conditions, the rates of the reactions follow the order p-OMe > p-Me > H > p-NO2 > m-Cl. The reaction is likely to involve electron transfer from 4 to the aryl iodide followed by fast decomposition of a postulated radical cation [Pd(Ph){2,6-(iPr2PCH2)2C6H3}]+. ( 4 +.) to give a phenyl radical and [Pd{2,6-(iPr2PCH2)2C6H3}]+ ( 6 +). Facile decomposition of the aryl iodide radical anion generates an aryl radical and I. Recombination of aryl radicals gives rise to mixed biaryls, and 6 + combines with I to give 5 .  相似文献   
2.
3.
4.
Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support. Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H(2)O, Fe(2+/3+), Cr(6+), NO(+)) and in the gas phase (NO(x) in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits. MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the output of one gate is used as the input for another gate. Using the same setup, we were able to display both combinatorial and sequential logic. We have demonstrated MBLC by coupling electrochemical inputs with optical readout, which resulted in various logic architectures built on a redox-active, functionalized surface. Electrochemically operated sequential logic systems such as flip-flops, multivalued logic, and multistate memory could enhance computational power without increasing spatial requirements. Applying multivalued digits in data storage could exponentially increase memory capacity. Furthermore, we evaluate the pros and cons of MBLC and identify targets for future research in this Account.  相似文献   
5.

Abstract  

This paper reports isotopic evidence on nonthermal plasma-induced fixation of gas-phase oxygen on the surface of several catalysts such as TiO2, Ag/TiO2, Ag/γ-Al2O3 and Ag/MS-13X at atmospheric-pressure. On-line mass spectrometric analysis and stoichiometric comparison of reactants and products revealed that the fixed surface oxygen can be activated by nonthermal plasma. The fixed 18O by nonthermal plasma survived for a certain period of time (about 30 min), and involved in the formation of isotope-exchanged oxygen (18O16O) and isotope containing CO x (CO and CO2).  相似文献   
6.
Potential profiles across molecular layers are constructed by means of noncontact electrically stimulated photoelectron spectroscopy, probing for the first time the molecule-substrate interface potential and resolving local screening effects across inner phenyl groups.  相似文献   
7.
8.
The ever-increasing flow of information requires new approaches for high-density data storage (HDDS). Here, we present a novel solution that incorporates the easily accessible polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with multistate memory. The electrical addressable polymer is able to store up to five different memory states, which are stable up to 20 min. The observed memory states are generated by the optical output signature of the PEDOT deposited on indium tin oxide (ITO) coated glass, upon applying specific electrical inputs. Moreover, the demonstrated platforms can be represented by a general logic circuit, which allows the construction of multistate memory, such as flip-flops and flip-flap-flop logic circuits.  相似文献   
9.
10.
One of the most challenging strategies to achieve tunable nanophotonic devices is to build robust nanohybrids with variable emission in the visible spectral range, while keeping the merits of pristine single-walled carbon nanotubes (SWNTs). This goal is realized by filling SWNTs ("pods") with a series of oligothiophene molecules ("peas"). The physical properties of these peapods are depicted by using aberration-corrected high-resolution transmission electron microscopy, Raman spectroscopy, and other optical methods including steady-state and time-resolved measurements. Visible photoluminescence with quantum yields up to 30% is observed for all the hybrids. The underlying electronic structure is investigated by density functional theory calculations for a series of peapods with different molecular lengths and tube diameters, which demonstrate that van der Waals interactions are the bonding mechanism between the encapsulated molecule and the tube.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号