首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学工业   4篇
建筑科学   1篇
能源动力   2篇
轻工业   7篇
无线电   4篇
一般工业技术   2篇
冶金工业   1篇
自动化技术   3篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2009年   3篇
  2008年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有24条查询结果,搜索用时 78 毫秒
1.
Atomic force microscopy (AFM) has been used to study the morphology and microstructure of an amine-cured epoxy before and after outdoor exposure. Measurements were made from samples prepared in an essentially CO2-free, H2O-free glove box and from samples prepared in ambient conditions. For those prepared in a CO2-free glove box, AFM imaging was conducted on (1) an unexposed air/coating surface, (2) an unexposed coating bulk, (3) an unexposed coating/substrate interface, and (4) a field exposed air/coating surface. For samples prepared in ambient conditions, only the unexposed air/coating surface was investigated. The same regions of the exposed samples were scanned periodically by the AFM to monitor changes in the surface morphology of the coating as UV exposure progressed. Small angle neutron scattering and Fourier transform infrared spectroscopy (FTIR) studies were performed to verify the microstructure and to follow chemical changes during outdoor exposure, respectively. The results have shown that amine blushing, which occurs only under ambient conditions, had a significant effect on the surface morphology and microstructure of the epoxy. The surface morphology of the samples prepared under CO2-free, dry conditions was generally smooth and homogeneous. However, the interface and the bulk samples clearly revealed a two-phase structure consisting of bright nodular domains and dark interstitial regions, indicating an inhomogeneous microstructure. Such heterogeneous structure of the bulk was in good agreement with results obtained by small angle neutron scattering of unexposed samples and by AFM phase imaging of the degraded sample surface. The relationship between submicrometer physical changes and molecular chemical degradation is discussed. Presented at the 82nd Annual Meeting of the Federation of Societies for Coatings Technology, October 27–29, 2004, in Chicago, IL.  相似文献   
2.
3.
We address the problem of generating compact code from software pipelined loops. Although software pipelining is a powerful technique to extract fine-grain parallelism, it generates lifetime intervals spanning multiple loop iterations. These intervals require periodic register allocation (also called variable expansion), which in turn yields a code generation challenge. We are looking for the minimal unrolling factor enabling the periodic register allocation of software pipelined kernels. This challenge is generally addressed through one of: (1) hardware support in the form of rotating register files, which solve the unrolling problem but are expensive in hardware; (2) register renaming by inserting register moves, which increase the number of operations in the loop, and may damage the schedule of the software pipeline and reduce throughput; (3) post-pass loop unrolling that does not compromise throughput but often leads to impractical code growth. The latter approach relies on the proof that MAXLIVE registers (maximal number of values simultaneously alive) are sufficient for periodic register allocation (Eisenbeis et al. in PACT ’95: Proceedings of the IFIP WG10.3 working conference on Parallel Architectures and Compilation Techniques, pages 264–267, Manchester, UK, 1995; Hendren et al. in CC ’92: Proceedings of the 4th International Conference on Compiler Construction, pages 176–191, London, UK, 1992). However, the best existing heuristic for controlling this code growth—modulo variable expansion (Lam in SIGPLAN Not 23(7):318–328, 1988)—may not apply the correct amount of loop unrolling to guarantee that MAXLIVE registers are enough, which may result in register spills Eisenbeis et al. in PACT ’95: Proceedings of the IFIP WG10.3 working conference on Parallel Architectures and Compilation Techniques, pages 264–267, Manchester, UK, 1995. This paper presents our research results on the open problem of minimal loop unrolling, allowing a software-only code generation that does not trade the optimality of the initiation interval (II) for the compactness of the generated code. Our novel idea is to use the remaining free registers after periodic register allocation to relax the constraints on register reuse. The problem of minimal loop unrolling arises either before or after software pipelining, either with a single or with multiple register types (classes). We provide a formal problem definition for each scenario, and we propose and study a dedicated algorithm for each problem. Our solutions are implemented within an industrial-strength compiler for a VLIW embedded processor from STMicroelectronics, and validated on multiple benchmarks suites.  相似文献   
4.
5.
This paper presents results showing the robustness of different SiC JFET transistors from SiCED in current limitation regime or short-circuit operation. Crystal temperature during failure was estimated after different electrical characterizations and using appropriate models of saturation current which is used as a thermal indicator. This work shows the exceptional robustness of SiC JFET transistors in current limitation mode compared to Si devices (MOSFETS and IGBTs).  相似文献   
6.
Surface topography and gloss are two related properties affecting the appearance of a polymeric coating system. Upon exposure to ultraviolet (UV) radiation, the surface topography of a coating becomes more pronounced and, correspondingly, its gloss generally decreases. However, the surface factors affecting gloss and appearance are difficult to ascertain. In this article, atomic force microscopy (AFM) and laser scanning confocal microscopy (LSCM) measurements have been performed on an amine-cured epoxy coating system exposed to outdoor environments in Gaithersburg, Maryland. The formation of the protuberances is observed at the early degradation stages, followed by the appearance of circular pits as exposure continues. At long exposure times, the circular features enlarge and deepen, resulting in a rough surface topography and crack formation. Fourier Transform Infrared Spectroscopy (FTIR) study indicates that the oxidation and chain scission reactions are likely the origins of the surface morphological changes. The relationship between changes in surface roughness and gloss has been analyzed. The root mean square (RMS) roughness of the coating is related to nanoscale and microscale morphological changes in the surface of the coating as well as to the gloss retention. A near-linear dependence of RMS roughness with the measurement length scale (L) is found on a double logarithmic scale, i.e., RMS ∼ L f. The scaling factor, f, decreases with exposure time. The relationship between surface topography, on nano- to microscales, and the macroscale optical properties such as gloss retention is discussed. Moreover, a recent development in using an angle-resolved light scattering technique for the measurement of the specular and off-specular reflectance of the UV-exposed specimens is also demonstrated, and the optical scattering data are compared to the gloss and the roughness results.
Xiaohong GuEmail:
  相似文献   
7.
8.
Model composition is a crucial activity in Model Driven Engineering both to reuse validated and verified model elements and to handle separately the various aspects in a complex system and then weave them while preserving their properties. Many research activities target this compositional validation and verification (V & V) strategy: allow the independent assessment of components and minimize the residual V & V activities at assembly time. However, there is a continuous and increasing need for the definition of new composition operators that allow the reconciliation of existing models to build new systems according to various requirements. These ones are usually built from scratch and must be systematically verified to assess that they preserve the properties of the assembled elements. This verification is usually tedious but is mandatory to avoid verifying the composite system for each use of the operators. Our work addresses these issues, we first target the use of proof assistants for specifying and verifying compositional verification frameworks relying on formal verification techniques instead of testing and proofreading. Then, using a divide and conquer approach, we focus on the development of elementary composition operators that are easy to verify and can be used to further define complex composition operators. In our approach, proofs for the complex operators are then obtained by assembling the proofs of the basic operators. To illustrate our proposal, we use the Coq proof assistant to formalize the language-independent elementary composition operators Union and Substitution and the proof that the conformance of models with respect to metamodels is preserved during composition. We show that more sophisticated composition operators that share parts of the implementation and have several properties in common (especially: aspect oriented modeling composition approach, invasive software composition, and package merge) can then be built from the basic ones, and that the proof of conformance preservation can also be built from the proofs of basic operators.  相似文献   
9.
Case Study of Water Table Evaporation at Ichkeul Marshes (Tunisia)   总被引:1,自引:0,他引:1  
The method of Gardner was used to estimate the evaporation rate from bare soils under high water table conditions, at Ichkeul marshes, of northern Tunisia. For this purpose, water content, soil-water suction, and water table depth were measured at three sites. Other common approaches that provide estimates of water table evaporation such as the Averianov and Coudrain-Ribstein et al. empirical formulas and the approach used by the U.S. Geological Survey's groundwater flow model MODFLOW were also evaluated. Next, a 2D groundwater simulation model, using the Gardner equations for computing evaporation rate, was developed to quantify the aquifer budget and groundwater losses via evaporation at the total area of the marshes. The model was calibrated in a steady-state condition. The results indicated significant groundwater losses by water table evaporation. The sensitivity of the groundwater model to the Averianov and MODFLOW approaches was analyzed. The best results (piezometric head and the area distribution of the evaporation discharge) were obtained with the Averianov formula.  相似文献   
10.
Rutin and esculin have been polymerised by laccase. Five fractions with M(w)ˉ between 2127.42 and 8331.85g/mol for oligorutins, and between 688.12 and 6973g/mol for oligoesculins, were obtained. Fourier transformed infrared analysis showed that oligorutins were formed through C-C, C-O and CO linkages, while oligoesculins were obtained through C-C linkages. Monomers, their oligomers and their metabolites exhibited no mutagenic effect. Oligorutins and oligoesculins were more efficient in reducing the mutagenicity of methyl methanesulphonate, by, respectively, 69% and 64.8% in the presence of Salmonella typhimurium TA104, and 79.7% and 68.9% in the presence of S. typhimurium TA102, than were their monomers. The same oligomers revealed greater significant inhibitory effect of 2-aminoanthracene mutagenicity (respectively 82.4% and 79.3% in the presence of S. typhimurium TA104, and 89.2% and 82.9% in the presence of S. typhimurium TA102), than their monomers. Our results strongly suggest the enhancement of the tested monomer antimutagenicity after polymerisation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号