首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
化学工业   10篇
轻工业   3篇
冶金工业   4篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2006年   2篇
  2003年   1篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
  1973年   1篇
排序方式: 共有17条查询结果,搜索用时 640 毫秒
1.
In four healthy volunteers, we analyzed in detail the immediate in vivo effects on circulating neutrophils of subcutaneous administration of 300 micrograms of granulocyte colony-stimulating factor (G-CSF). Neutrophil activation was assessed by measurement of degranulation. Mobilization of secretory vesicles was shown by a decrease in leukocyte alkaline phosphatase content of the circulating neutrophils. Furthermore, shortly postinjection, Fc gamma RIII was found to be upregulated from an intracellular pool that we identified by immunoelectron microscopy as secretory vesicles. Intravascular release of specific granules was shown by increased plasma levels of lactoferrin and by upregulation of the expression of CD66b and CD11b on circulating neutrophils. Moreover, measurement of fourfold elevated plasma levels of elastase, bound to its physiologic inhibitor alpha 1-antitrypsin, indicated mobilization of azurophil granules. However, no expression of CD63, a marker of azurophil granules, was observed on circulating neutrophils. G-CSF--induced mobilization of secretory vesicles and specific granules could be mimicked in whole blood cultures in vitro, in contrast to release of azurophil granules. Therefore, we postulate that the most activated neutrophils leave the circulation, as observed shortly postinjection, and undergo subsequent stimulation in the endothelial microenvironment, resulting in mobilization of azurophil granules. Our data demonstrate that G-CSF should be regarded as a potent immediate activator of neutrophils in vivo.  相似文献   
2.
Proteolytic inactivation of serine protease inhibitors (serpins) by neutrophil elastase (HNE) is presumed to contribute to the deregulation of plasma cascade systems in septic shock. Here, we report a supplementary approach to construct serpins, in our case C1 inhibitor, that are resistant to catalytic inactivation by HNE. Instead of shifting the specificity of alpha 1-antitrypsin towards the proteases of the contact activation and complement systems, we attempted to obtain a C1 inhibitor species which resists proteolytic inactivation by HNE. 12 recombinant C1 inhibitor variants were produced with mainly conservative substitutions at the cleavage sites for HNE, 440-Ile and/or 442-Val. Three variants significantly resisted proteolytic inactivation, both by purified HNE, as well as by activated neutrophils. The increase in functional half-life in the presence of FMLP-stimulated cells was found to be 18-fold for the 440-Leu/442-Ala variant. Inhibitory function of these variants was relatively unimpaired, as examined by the formation of stable complexes with C1s, beta-Factor XIIa, kallikrein, and plasmin, and as determined by kinetic analysis. The calculated association rate constants (k(on)) were reduced twofold at most for C1s, and appeared unaffected for beta-Factor XIIa. The effect on the k(on) with kallikrein was more pronounced, ranging from a significant ninefold reduction to an unmodified rate. The results show that the reactive centre loop of C1 inhibitor can be modified towards decreased sensitivity for nontarget proteases without loss of specificity for target proteases. We conclude that this approach extends the possibilities of applying recombinant serpin variants for therapeutic use in inflammatory diseases.  相似文献   
3.
Disulfide-rich macrocyclic peptides—cyclotides, for example—represent a promising class of molecules with potential therapeutic use. Despite their potential their efficient synthesis at large scale still represents a major challenge. Here we report new chemoenzymatic strategies using peptide ligase variants—inter alia, omniligase-1—for the efficient and scalable one-pot cyclization and folding of the native cyclotides MCoTI-II, kalata B1 and variants thereof, as well as of the θ-defensin RTD-1. The synthesis of the kB1 variant T20K was successfully demonstrated at multi-gram scale. The existence of several ligation sites for each macrocycle makes this approach highly flexible and facilitates both the larger-scale manufacture and the engineering of bioactive, grafted cyclotide variants, therefore clearly offering a valuable and powerful extension of the existing toolbox of enzymes for peptide head-to-tail cyclization.  相似文献   
4.
Many pathogenic bacteria can use heme compounds as a source of iron. Pathogenic Escherichia coli strains are capable of using hemoglobin as an iron source. However, the mechanism of heme acquisition from hemoglobin is not understood for this microorganism. We present the first molecular characterization of a hemoglobin protease (Hbp) from a human pathogenic E. coli strain. The enzyme also appeared to be a heme-binding protein. Affinity purification of this bifunctional protein enabled us to identify the extracellular gene product, and to clone and analyze its gene. A purification procedure developed for Hbp allowed us to perform functional studies. The protein interacted with hemoglobin, degraded it and subsequently bound the released heme. These results suggest that the protein is involved in heme acquisition by this human pathogen. Hbp belongs to the so-called IgA1 protease-like proteins, as indicated by the kinetics of its membrane transfer and DNA sequence similarity. The gene of this protein appears to be located on the large pColV-K30 episome, that only has been isolated from human and animal pathogens. All these characteristics indicate that Hbp may be an important virulence factor that may play a significant role in the pathogenesis of E. coli infections.  相似文献   
5.
The velocity profile in a parallel plate channel containing a highly-porous isotropic spacer is derived theoretically for the region where D'Arcy's law holds from a modified mixing length hypothesis for the eddy viscosity. The velocity distribution is determined by two dimensionless parameters which embody the effects of spacer drag on the fluid and eddy mixing respectively. The velocity profile becomes flatter with increases in either of these two parameters.  相似文献   
6.
We describe a novel, organic cosolvent‐stable and cation‐independent engineered enzyme for peptide coupling reactions. The enzyme is a variant of a stable calcium‐independent mutant of subtilisin BPN′, with the catalytic Ser212 mutated to Cys and Pro216 converted to Ala. The enzyme, called peptiligase, catalyzes exceptionally efficient peptide coupling in water with a surprisingly high synthesis over hydrolysis (S/H) ratio. The S/H ratio of the peptide ligation reaction is correlated to the length of the peptide substrate and proved to be >100 for the synthesis of a 13‐mer peptide, which corresponds to >99% conversion to the ligated peptide product and <1% hydrolytic side‐reaction. Furthermore, peptiligase does not require a particular recognition motif resulting in a broadly applicable and traceless peptide ligation technology. Peptiligase is very robust, easy to produce in Bacillus subtilis, and its purification is straightforward. It shows good activity and stability in the presence of organic cosolvents and chelating or denaturing agents, enabling the ligation of poorly soluble (hydrophobic) or folded peptides. This enzyme could be useful for the (industrial) synthesis of diverse (pharmaceutical) peptides. In addition, peptiligase is able to efficiently catalyze head‐to‐tail peptide cyclization reactions.

  相似文献   

7.
The substrate profile of peptiligase, a stable enzyme designed for peptide ligation in aqueous environments, was mapped using six different peptide libraries. The most discriminating substrate binding pocket proved to be the first nucleophile binding subsite (S1′), which is crucial for the peptide ligation yield. Two important amino acids shaping the S1′ pocket are M213 and L208. A site‐saturation library of the M213 position yielded two variants with a significantly broadened substrate profile, i.e., M213G and M213P. Next, examination of two libraries with M213G+L208X and M213P+L208X (with X being any proteinogenic amino acid) resulted in a toolbox of enzymes which can accommodate any proteinogenic amino acid in the S1′ pocket, except proline. The applicability of a particular enzyme variant in chemoenzymatic peptide synthesis was demonstrated by coupling at the gram scale of two peptide segments to yield exenatide, a 39‐mer therapeutic peptide used in the treatment of diabetes type II. The overall yield of 43% is at least 2‐fold higher than yields reported for conventional syntheses of exenatide by full solid‐phase peptide synthesis; large‐scale production costs are expected to be significantly reduced if the enzymatic coupling process is employed to manufacture this peptide.

  相似文献   

8.
The C‐terminal activation of peptides as prerequisite for the formation or ligation of peptide fragments is often associated with the problem of epimerization. We report that ruthenium‐catalyzed alkyne addition with (+)‐2,3‐O‐isopropylidene‐2,3‐dihydroxy‐1,4‐bis(diphenylphosphino)butane as ligand allows the racemization‐free synthesis of peptide enol esters tolerating a wide range of functional groups. The transformation can be performed in a variety of different solvents addressing the solubility issues imposed by peptides with varying amino acid side chain patterns. We show that peptide enol esters with an amide motif in the enol moiety are excellent acyl donors for the peptide condensation with other peptide fragments in organic solvents using serine endopeptidase subtilisin A as catalyst. The reported combination of transition metal catalysis with enzymatic peptide ligations adds an important tool for the racemization‐free synthesis and ligation of peptides which is compatible even with unprotected amino acid side chains.  相似文献   
9.
To establish the relationships between the fatty acid composition of adipose tissue in growing pigs and the intake of fatty acids, we performed a feeding trial and did a literature survey. Six groups of pigs were fed diets with variable combinations of corn, linseed and fish oil. After 38 days, biopsies of adipose tissue were analyzed for their contents of linoleic, -linolenic, eicosapentaenoic and docosahexaenoic acid. For the four fatty acids, intake data and adipose tissue levels were also collected from the literature. Linear correlations were computed for the intake of each polyunsaturated fatty acid and its level in adipose tissue, the data set consisting of either the original results only or combined with literature figures. The observed strong correlations between dietary and fat tissue polyunsaturated fatty acids indicate that the fatty acid composition of the diet may be used as an index of the fatty acid composition of the diet, and vice versa. The regression equations presented can be used to steer the fatty acid composition of adipose tissue of growing pigs by the fatty acid composition of their diet.  相似文献   
10.
The substrate mimetics approach is a versatile method for small-scale enzymatic peptide-bond synthesis in aqueous systems. The protease-recognized amino acid side chain is incorporated in an ester leaving group, the substrate mimetic. This shift of the specific moiety enables the acceptance of amino acids and peptide sequences that are normally not recognized by the enzyme. The guanidinophenyl group (OGp), a known substrate mimetic for the serine proteases trypsin and chymotrypsin, has now been applied for the first time in combination with papain, a cheap and commercially available cysteine protease. To provide insight in the binding mode of various Z-X(AA)-OGp esters, computational docking studies were performed. The results strongly point at enzyme-specific activation of the OGp esters in papain through a novel mode of action, rather than their functioning as mimetics. Furthermore, the scope of a model dipeptide synthesis was investigated with respect to both the amino acid donor and the nucleophile. Molecular dynamics simulations were carried out to prioritize 22 natural and unnatural amino acid donors for synthesis. Experimental results correlate well with the predicted ranking and show that nearly all amino acids are accepted by papain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号