首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
化学工业   2篇
机械仪表   1篇
建筑科学   1篇
无线电   1篇
一般工业技术   8篇
冶金工业   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
排序方式: 共有14条查询结果,搜索用时 156 毫秒
1.

The effect of Ni content on microstructure and mechanical properties of the CrMnFeCoNi high entropy alloy (HEA) has been studied. The Ni content varied from 0 to 20 at% in the composition (CrMnFeMn)100?xNix, where x?=?0, 2.5, 5, 10, 15, and 20 at%. The alloys were synthesized by vacuum arc melting and the microstructure as well as hardness of the as-cast alloys were studied. Alloys with low Ni content (x?≤?2.5%) consists of a two-phase microstructure of dendritic and inter-dendritic regions with fcc (matrix) and tetragonal (sigma) crystal structure, respectively. When the Ni content is 5 at%, two-phase structure with fcc (matrix) and bcc (secondary phase) is observed, with the addition of Mn-rich inclusions that are present in the entire matrix. Alloys with higher Ni content (x?≥?10, at%) exhibit a single phase of fcc structure. Hardness of the HEAs decreases from 320 to 120 Hv with increase in Ni content, and the high hardness of these alloys with low Ni content is due to the mixture of both fcc and hard tetragonal (sigma) phases.

  相似文献   
2.
Effect of temperature on magnetic domain structure of Bi0.7Dy0.3FeO3 (BDFO) multiferroic thin films is studied in situ using magnetic force microscopy (MFM). Initially, as the temperature increases the domains start aligning from irregular to more distinct stripe pattern. However, above 250 °C, the domain alignment is disturbed. The systematic change in the domain configuration with temperature, suggests a strong thermal history of the system. The randomness in domain alignment caused above 250 °C is correlated to internal stress developed during ferromagnetic to paramagnetic phase transition occurring in BDFO. Indirect experimental evidence is given to support the explanation based on stress.  相似文献   
3.
Noble-metal nanoparticles labeled with fluorescent molecules are used in a variety of applications requiring the measurement of size and diffusion properties of single nanoprobes. We have successfully used intrinsic surface-plasmon-induced photoluminescence (SPPL) signatures of monodispersed bare gold and silver nanoparticles in water to detect and measure their precise diffusion coefficient, concentration and hydrodynamic radius by fluorescence correlation spectroscopy (FCS). Measurement of the effective hydrodynamic radius confirms particle size to be 80 ± 8 and 64 ± 14 nm for gold and silver, respectively, which is in excellent agreement with scanning electron microscopic measurements made on the same particles. Detection of bare gold and silver nanoparticles at the single-molecule level with moderately high value of "per particle brightness" (PPB) confirms those particles to be used as fluorescent probes in biological research and in different medical and biotechnology applications where fluorescence detection plays a vital role. Additionally, these results demonstrate an alternative method for measuring hydrodynamic properties, particularly the size-distribution of bare noble-metal nanoparticles in solution using data-fitting algorithm for FCS based on the maximum entropy method (MEMFCS).  相似文献   
4.
Graphene platelets were synthesized from pencil flake graphite and commercial graphite by chemical method. The chemical method involved modified Hummer's method to synthesize graphene oxide (GO) and the use of hydrazine monohydrate to reduce GO to reduced graphene oxide (rGO). rGO were further reduced using rapid microwave treatment in presence of little amount of hydrazine monohydrate to graphene platelets. Chemically modified graphene/polypyrrole (PPy) nanofiber composites were prepared by in situ anodic electropolymerization of pyrrole monomer in the presence of graphene on stainless steel substrate. The morphology, composition, and electronic structure of the composites together with PPy fibers, graphene oxide (GO), rGO, and graphene were characterized using X‐ray diffraction (XRD), laser‐Raman, and scanning electron microscopic (SEM) methods. From SEM, it was observed that chemically modified graphene formed as a uniform nanocomposite with the PPy fibers absorbed on the graphene surface and/or filled between the graphene sheets. Such uniform structure together with the observed high conductivities afforded high specific capacitance and good cycling stability during the charge–discharge process when used as supercapacitor electrodes. A specific capacitance of supercapacitor was as high as 304 F g?1 at a current density of 2 mA cm?1 was achieved over a PPy‐doped graphene composite. POLYM. ENG. SCI., 55:2118–2126, 2015. © 2014 Society of Plastics Engineers  相似文献   
5.
K. Prashanthi  T. Thundat 《Scanning》2014,36(2):224-230
In this work, we have studied electric field‐induced magnetization effect of multiferroic BiFeO3 (BFO) nanowires in situ using magnetic force microscopy (MFM). Changes in magnetic domain contrast have been observed in the MFM phase images under applied electric potential, which indicate local magnetoelectric (ME) coupling in the nanowires. The values of saturation and magnetization at different applied electric fields were evaluated. These results suggest that one‐dimensional multiferroic BFO nanowires are potential candidates for realizing multiferroic devices at nanoscale with unique functionalities. SCANNING 36:224–230, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
6.
Colorectal cancer (CRC) is a heterogeneous disease, which in part explains the differential response to chemotherapy observed in the clinic. BH3 mimetics, which target anti-apoptotic BCL-2 family members, have shown potential in the treatment of hematological malignancies and offer promise for the treatment of solid tumors as well. To gain a comprehensive understanding of the response to BH3 mimetics in CRC and the underlying molecular factors predicting sensitivity, we screened a panel of CRC cell lines with four BH3 mimetics targeting distinct anti-apoptotic BCL-2 proteins. Treatment with compounds alone and in combination revealed potent efficacy of combined MCL-1 and BCL-XL inhibition in inducing CRC cell death, irrespective of molecular features. Importantly, expression of the anti-apoptotic protein target of BH3 mimetics on its own did not predict sensitivity. However, the analysis did identify consensus molecular subtype (CMS) specific response patterns, such as higher resistance to single and combined BCL-2 and MCL-1 inhibition in CMS2 cell lines. Furthermore, analysis of mutation status revealed that KRAS mutant cell lines were more resistant to MCL-1 inhibition. Conclusively, we find that CRC cell lines presented with distinct responses to BH3 mimetics that can in part be predicted by their CMS profile and KRAS/BRAF mutations. Overall, almost all CRC lines share sensitivity in the nanomolar range to combined MCL-1 and BCL-XL targeting suggesting that this would be the preferred approach to target these cancers.  相似文献   
7.
8.
Magnetoelectric multiferroic Bi0.7Dy0.3FeO3 (BDFO) thin films deposited on p-type Si (100) substrate using pulsed laser deposition technique demonstrated a saturated ferroelectric and ferromagnetic hysteresis loop at room temperature. More interestingly, the observed change in electric polarization with applied magnetic field in these films indicated the presence of room temperature magnetoelectric coupling behavior. Using high-frequency capacitance-voltage measurements, the fixed oxide charge density, interface trap density and dielectric constant were estimated on Au/BDFO/Si capacitors. These results suggest the integrated circuit compatible application potential of BDFO films in the field of micro-electro-mechanical systems and non-volatile memories.  相似文献   
9.
Gate dielectric materials having high dielectric constant, low interface state density and good thermal stability are needed for advanced CMOS applications. In this letter, the electrical properties of novel multiferroic Bi0.7Dy0.3FeO3 (BDFO) thin films deposited using the pulsed laser deposition technique on p-type (100) silicon substrate are reported. Using high frequency capacitance-voltage (C-V) measurements, the dielectric constant, effective oxide charge density and interface state density were estimated. The results suggest the potential application of multiferroic BDFO films as gate dielectric material for novel memory devices that can be electrically written and magnetically read.  相似文献   
10.
Goswami  Ankur  Dhandaria  Priyesh  Pal  Soupitak  McGee  Ryan  Khan  Faheem  Antić  Željka  Gaikwad  Ravi  Prashanthi  Kovur  Thundat  Thomas 《Nano Research》2017,10(10):3620-3620
Nano Research - The correspondence author in the original version of this article was unfortunately wrongly written on page 3571 and the first page of the ESM. Instead of Ankur Goswami1, Priyesh...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号