首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学工业   1篇
能源动力   10篇
一般工业技术   1篇
冶金工业   18篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2014年   2篇
  2013年   3篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2001年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1992年   2篇
  1990年   1篇
  1986年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
This study investigated the relationship between self-appraisals of performance, symptom severity and post-event rumination in social phobia, and evaluated the effect of treatment on these variables. A socially phobic group and a nonanxious control group performed an impromptu speech and were told that their performance would be evaluated. Participants appraised their performance immediately after the speech and 1 week later, and the frequency of post-event rumination during the week following the speech was assessed. The socially phobic group maintained the negative appraisals of their speech over the week, whereas the nonclinical group showed increased positivity about their performance The socially phobic group also engaged in more negative rumination than controls. Treatment improved perceptions of performance and reduced negative rumination. These results are discussed in the light of cognitive models of social phobia. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
2.
Hierarchical carbon scaffold (HCS) with multi-porous structures, favoring hydrogen diffusion and physisorption is doped with 2–10 wt % Ni for storing hydrogen at ambient temperature. Due to N- and O-rich structure of melamine-formaldehyde resin used as carbon precursor, homogeneous distribution of heteroatoms (N and O) in HCS is achieved. 2 wt % Ni-doped HCS shows the highest hydrogen capacity up to 2.40 wt % H2 (T = 298 K and p (H2) = 100 bar) as well as excellent reversibility of 18.25 g H2/L and 1.25 wt % H2 (T = 298 K and p (H2) = 50 bar) and electrical production from PEMFC stack up to 0.7 Wh upon eight cycles. Computations and experiments confirm strong interactions between Ni and heteroatoms, leading to uniform distribution small particles of Ni. This results in enhancing reactive surface area for hydrogen adsorption and preventing agglomeration of Ni nanoparticles upon cycling. Ni K-edge XANES spectra simulated from the optimized structure of Ni-doped N/O-rich carbon using DFT calculations are consistent with the experimental spectra and suggest electron transfer from Ni to hydrogen to form Ni–H bond upon adsorption. Considering low desorption temperature (323 K), not only chemisorbed hydrogen is involved in adsorption mechanisms but also physisorption and spillover of hydrogen.  相似文献   
3.
De/rehydrogenation kinetics and reversibility of MgH2 are improved by doping with activated carbon nanofibers (ACNF) and compositing with LiBH4. Via doping with 5 wt % ACNF, hydrogen absorption of Mg to MgH2 (T = 320 °C and p(H2) = 50 bar) increases from 0.3 to 4.5 wt % H2. Significant reduction of onset dehydrogenation temperature of MgH2 to 340 °C (ΔT = 70 °C as compared with pristine MgH2) together with 6.8–8.2 wt % H2 can be obtained by compositing Mg-5 wt. % ACNF with LiBH4 (LiBH4:Mg mole ratios of 0.5:1, 1:1, and 2:1). During dehydrogenation of Mg-rich composites (0.5:1 and 1:1 mol ratios), the formation of MgB2 and Mg0.816Li0.184 implying the reaction between LiBH4 and MgH2 favors kinetic properties and reversibility, while the composite with 2:1 mol ratio shows individual dehydrogenation of LiBH4 and MgH2. For up-scaling to hydrogen storage tank (~120 times greater sample weight than laboratory scale) of the most suitable composite (1:1 mol ratio), de/rehydrogenation kinetics and hydrogen content released at all positions of the tank are comparable and approach to those from laboratory scale. Due to high purity (100%) and temperature of hydrogen gas from hydride tank, the performance of single proton exchange membrane fuel cell enhances up to 30% with respect to the results from compressed gas tank.  相似文献   
4.
By doping with 5 wt % TiF4 and activated carbon (AC), onset and main dehydrogenation temperatures of MgH2 significantly reduce (ΔT = 138 and 109 °C, respectively) with hydrogen capacity of 4.4 wt % H2. Up-scaling to storage tank begins with packing volume and sample weight of 28.8 mL and ~14.5 g, respectively, and continues to 92.6 mL and ~60.5–67 g, respectively. Detailed hydrogen sorption mechanisms and kinetics of the tank tightly packed with four beds of MgH2TiF4-AC (~60.5 g) are investigated. De/rehydrogenation mechanisms are detected by three temperature sensors located at different positions along the tank radius, while hydrogen permeability is benefited by stainless steel mesh sheets and tube inserted in the hydride beds. Fast desorption kinetics of MgH2TiF4-AC tank at ~275–283 °C, approaching to onset dehydrogenation temperature of the powder sample (272 °C) suggests comparable performances of laboratory and tank scales. Hydrogen desorption (T = 300 °C and P(H2) = 1 bar) and absorption (T = 250 °C and P(H2) = 10–15 bar) of MgH2TiF4-AC tank provide gravimetric and volumetric capacities during the 1st-2nd cycles of 4.46 wt % H2 and 28 gH2/L, respectively, while those during the 3rd-15th cycles are up to 3.62 wt % H2 and 23 gH2/L, respectively. Due to homogeneous heat transfer along the tank radius, de/rehydrogenation kinetics superior at the tank center and degrading forward the tank wall can be due to poor hydrogen permeability. Particle sintering and/or agglomeration upon cycling yield deficient hydrogen content reproduced.  相似文献   
5.
A simple protocol for the growth and differentiation of adult Mongolian gerbil epidermal cells is reported. Insulin (8 micrograms/ml) and reduced levels of serum supplementation (2%) were sufficient for the maintenance of these cells in culture. Primary cultures were maintained as a proliferative monolayer in a medium with low calcium concentration (< 0.3 mM). Terminal differentiation of cultures was induced by raising the calcium concentration (1.6 mM) in the medium. These results support the concept derived from mouse epidermal cell culture that calcium is an important regulator of mammalian epidermal cell growth and differentiation. The present protocol also represents a useful tool for studies of mechanisms involved in epidermal cell growth and differentiation in a laboratory animal.  相似文献   
6.
The hydrogen sorption behavior of the Mg2FeH6–MgH2 hydride system is investigated via in-situ synchrotron and laboratory powder X-ray diffraction (SR-PXD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle size distribution (PSD) and volumetric techniques. The Mg2FeH6–MgH2 hydride system is obtained by mechanical milling in argon atmosphere followed by sintering at high temperature and hydrogen pressure. In-situ SR-PXD results show that upon hydriding MgH2 is a precursor for Mg2FeH6 formation and remained as hydrided phase in the obtained material. Diffusion constraints preclude the further formation of Mg2FeH6. Upon dehydriding, our results suggest that MgH2 and Mg2FeH6 decompose independently in a narrow temperature range between 275 and 300 °C. Moreover, the decomposition behavior of both hydrides in the Mg2FeH6–MgH2 hydride mixture is influenced by each other via dual synergetic-destabilizing effects. The final hydriding/dehydriding products and therefore the kinetic behavior of the Mg2FeH6–MgH2 hydride system exhibits a strong dependence on the temperature and pressure conditions.  相似文献   
7.
One hundred thirty patients presenting at an anxiety disorders research clinic were administered a structured interview (i.e., Anxiety Disorders Interview Schedule—Revised). Diagnoses were made in accordance with Diagnostic and Statistical Manual of Mental Disorders-III—Revised (DSM-III—R) criteria. Seventy percent of patients received at least one additional but secondary Axis I diagnosis. The most common additional diagnoses were simple and social phobia, which were assigned to nearly one third of all patients. In addition, 33% of anxiety disorder patients received an additional diagnosis of a depressive mood disorder (i.e., dysthymia or major depression). The distribution of specific additional diagnoses are presented for each principal anxiety disorder category. The scientific and clinical implications of comorbidity are discussed while considering the relatively high patterns of syndrome comorbidity found in the present study, which is consistent with several earlier studies. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
8.
Statistical methods designed for categorical data were used to perform confirmatory factor analyses and item response theory (IRT) analyses of the Fear of Negative Evaluation scale (FNE; D. Watson & R. Friend, 1969) and the Brief FNE (BFNE; M. R. Leary, 1983). Results suggested that a 2-factor model fit the data better for both the FNE and the BFNE, although the evidence was less strong for the FNE. The IRT analyses indicated that although both measures had items with good discrimination, the FNE items discriminated only at lower levels of the underlying construct, whereas the BFNE items discriminated across a wider range. Convergent validity analyses indicated that the straightforwardly-worded items on each scale had significantly stronger relationships with theoretically related measures than did the reverse-worded items. On the basis of all analyses, usage of the straightforwardly-worded BFNE factor is recommended for the assessment of fear of negative evaluation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
9.
Hydroxyapatite/poly(methyl methacrylate) (HAp/PMMA) and calcium silicate/poly(methyl methacrylate) (CS/PMMA) composites were prepared by interpenetrating bulk polymerization of methyl methacrylate (MMA) monomer in porous structures of HAp and CS. The porous HAp and CS templates were prepared by mixing their calcined powders with poly(vinyl alcohol) (PVA) solution, shaping by uniaxial pressing and then firing at 1,100 °C for HAp and 900 °C for CS. The templates were soaked in the solution mixture of MMA monomer and 0.1 mol% of benzoyl peroxide (BPO) for 24 h. The pre-composites were then bulk polymerized at 85 °C for 24 h under nitrogen atmosphere. The microstructures of the composites showed the interpenetrating of PMMA into the porous HAp and CS structures. Thermogravimetric analysis indicated that the PMMA content in the HAp/PMMA and CS/PMMA composites were 13 and 26 wt%, respectively. Weight average molecular weights ( ) of PMMA were about 491,000 for HAp/PMMA composites and about 348,000 for CS/PMMA composites. Compressive strengths of these composites were about 90–131 MPa in which they were significantly higher than their starting porous templates.  相似文献   
10.
Nanoconfinement of 2LiBH4–MgH2–TiCl3 in resorcinol–formaldehyde carbon aerogel scaffold (RF–CAS) for reversible hydrogen storage applications is proposed. RF–CAS is encapsulated with approximately 1.6 wt. % TiCl3 by solution impregnation technique, and it is further nanoconfined with bulk 2LiBH4–MgH2 via melt infiltration. Faster dehydrogenation kinetics is obtained after TiCl3 impregnation, for example, nanoconfined 2LiBH4–MgH2–TiCl3 requires ∼1 and 4.5 h, respectively, to release 95% of the total hydrogen content during the 1st and 2nd cycles, while nanoconfined 2LiBH4–MgH2 (∼2.5 and 7 h, respectively) and bulk material (∼23 and 22 h, respectively) take considerably longer. Moreover, 95–98.6% of the theoretical H2 storage capacity (3.6–3.75 wt. % H2) is reproduced after four hydrogen release and uptake cycles of the nanoconfined 2LiBH4–MgH2–TiCl3. The reversibility of this hydrogen storage material is confirmed by the formation of LiBH4 and MgH2 after rehydrogenation using FTIR and SR-PXD techniques, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号