首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学工业   11篇
金属工艺   1篇
机械仪表   1篇
能源动力   6篇
轻工业   1篇
无线电   2篇
一般工业技术   3篇
冶金工业   3篇
自动化技术   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Copper containing faujasite has been successfully prepared for the first time using a direct synthesis method. Faujasite type zeolite can be prepared in the presence of copper species by tuning the synthesis conditions. Ammonium hydroxide was used to form a copper complex that was later mixed with the reacting gel. Sodium is required to obtain copper faujasite. The complete elimination of sodium ions from the starting gel produces amorphous material. Crystallization took place at 358 K for 11 days. Crystallization temperature of 373 K produces ANA type zeolite as an impurity. Increasing by two times the amount of copper complex added to the reacting gel increases the crystallization time of Cu-FAU from 11 to 20 days (the crystallization rate decreases). The copper containing faujasite obtained was characterized by XRD, FESEM, EDX, EPR, FT-IR, TPR, and BET. According to the XRD pattern only FAU type zeolite was obtained. According to TPR experiments, the reduction temperature for Cu2+ ions present in Cu-FAU prepared by direct synthesis was 70 K more than for Cu-FAU prepared by ion-exchange. This difference can be due to the different location of the copper ions in the supercages or in the sodalite cages of the faujasite.  相似文献   
2.
Abstract

Wire electrical discharge machining (WEDM) is always significant for its high-precision machining. However, due to the generation of high discharge energy during machining, machined surfaces are often got distorted. These might be upgraded by choosing the correct tool with proper machining condition. The effects of the electrode materials and process parameters on different responses of WEDM like average surface roughness, recast layer thickness, and surface morphology are systematically examined here to enhance the knowledge of WEDM and its correlation with electrode property. The experiments have been carried out on one of the expensive steel namely Maraging steel 300 due to its applicability in tooling and aerospace industries. Plain brass wire, zinc-coated brass wire (ZCB), and silver-coated brass (SCB) wires are used as a tool electrode for analysis. Comparative experimental studies prove that among BW, ZCB, and SCB, the overall performance of SCB is commendable owing to the high-quality surface considering control parameters in low discharge energy level. However, the second-best performance is shown by ZCB.  相似文献   
3.
In the present work iron oxide nanoparticles have been synthesized by alkaline solvo thermal method using anhydrous ferric chloride, sodium hydroxide, polyethylene glycol and cetyl trimethyl ammonium bromide and characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray Spectroscopy (EDX) and Thermal Gravimetric Analysis (TGA). XRD indicated that the product is a mixture of different phases of iron oxide viz. gamma-Fe2O3 (maghemite, tetragonal), Fe2O3 (maghemite, cubic), Fe3O4 (magnetite, cubic) and ?-Fe2O3(epsilon iron oxide). FESEM studies indicated that size of the particles is observed in the range of about 19.8 nm to 48 nm. EDX spectral analysis reveals the presence of carbon, oxygen, iron in the synthesized nanoparticles. The FTIR spectra indicated absorption bands due to O-H stretching, C-O bending, N-H stretching and bending, C-H stretching and Fe-O stretching vibrations. TGA curve represented weight loss of around 3.0446 % in the sample at temperature of about 180°C due to the elimination of the water molecules absorbed by the nanoparticles from the atmosphere.  相似文献   
4.
The quest for alternative energy sources has stimulated interest in several new materials. Using an aqueous suspension of zinc oxide nanoparticles in specially-designed electrochemical cells we have observed significant voltage (maximum 498.0 mV) and storage capacity (∼60 h) upon thermal excitation. Voltage increased gradually with increasing temperature. The cells exhibited reasonable energy conversion efficiency (maximum 1.05%). Moreover, increases in efficiency and storage duration were observed with the insertion of a planar lipid membrane (PLM) within the electrochemical cell, since the hydrophobic barrier of the lipid membrane hindered back recombination of the charges produced by thermal excitation. The novelty of the cells lies in the fact that voltage was generated by utilizing the heat energy of solar radiation, as opposed to the light quanta of the solar influx used in conventional photovoltaic cells.  相似文献   
5.
Hydrogen sulfide (H2S) is an environmental toxin and a heritage of ancient microbial metabolism that has stimulated new interest following its discovery as a neuromodulator. While many physiological responses have been attributed to low H2S levels, higher levels inhibit complex IV in the electron transport chain. To prevent respiratory poisoning, a dedicated set of enzymes that make up the mitochondrial sulfide oxidation pathway exists to clear H2S. The committed step in this pathway is catalyzed by sulfide quinone oxidoreductase (SQOR), which couples sulfide oxidation to coenzyme Q10 reduction in the electron transport chain. The SQOR reaction prevents H2S accumulation and generates highly reactive persulfide species as products; these can be further oxidized or can modify cysteine residues in proteins by persulfidation. Here, we review the kinetic and structural characteristics of human SQOR, and how its unconventional redox cofactor configuration and substrate promiscuity lead to sulfide clearance and potentially expand the signaling potential of H2S. This dual role of SQOR makes it a promising target for H2S-based therapeutics.  相似文献   
6.
The use of congress grass (Parthenium sp.) and water hyacinth (Eichhornia crassipes) as low cost raw materials for xylanase production from mutant Penicillium oxalicum SAUE-3.510 in submerged fermentation was investigated. For development of mutant from wild type P. oxalicum SA-8 ITCC 6024, a strategy of mixed mutagenesis was followed using UV-irradiation and ethidium bromide, which had resulted into 1.87 fold increases in the activity of the enzyme. For enzyme production, the fungus was cultivated in mineral medium containing congress grass as carbon source. Considerably higher levels of production (475.2 ± 6.0 IU ml?1) were achieved in media containing congress grass, although it was slightly less than that was obtained (488.5 ± 6.5 IU ml?1) in presence of commercial oat spelt xylan. This fact confirms the feasibility of using this low cost non-food resource as an alternative carbon source to save costs of the enzyme production process. Maximum xylanase activity was reported at 55 °C with its stability at 80 °C for 2 h. The highest activity of xylanase at pH 9.0 and its stability at similar pH for 24 h denote the alkalitolerant nature of enzyme.  相似文献   
7.
A mullite based antimicrobial ceramic composite has been developed by simple adsorption of copper nano particle suspension. The physico-chemical properties of samples were characterized by different instruments which showed that the composite is well crystalline with homogeneous distribution of copper nanoparticles on the surface. Antimicrobial study was performed by plate count technique which showed > 99% mortality for all the bacterial species studied after 24 h of incubation. Minimum inhibitory concentration (MIC) values determined by batch culture process showed considerably low values (in terms of copper content) indicating that mullite matrix plays a role in enhancing the antimicrobial efficacy of the composite. Biocompatibility studies on human cancer cell lines indicated that the composite had negligible toxicity below 100 μg/mL of Cu content. Thus the composite can be suitable for developing antimicrobial ceramic wares and therapeutic purposes like treatment of variety of microbial infections.  相似文献   
8.
Nanocrystalline mullite with grain sizes in the range of 13–30 nm has been prepared by the sol–gel route at a temperature as low as 600°C with the incorporation of copper ions as copper sulfate. Characterization of the copper-doped mullite was performed by DTA–TG, X-ray diffraction (XRD), FESEM, and FTIR spectroscopy.  相似文献   
9.
People attempting to generate random sequences usually produce more alternations than expected by chance. They also judge overalternating sequences as maximally random. In this article, the authors review findings, implications, and explanatory mechanisms concerning subjective randomness. The authors next present the general approach of the mathematical theory of complexity, which identifies the length of the shortest program for reproducing a sequence with its degree of randomness. They describe 3 experiments, based on mean group responses, indicating that the perceived randomness of a sequence is better predicted by various measures of its encoding difficulty than by its objective randomness. These results seem to imply that in accordance with the complexity view, judging the extent of a sequence's randomness is based on an attempt to mentally encode it. The experience of randomness may result when this attempt fails. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   
10.
A new and novel material, triturated zinc oxide nanoparticles, which is eco-friendly, easily available, low in cost, has been used here for the first time for enhancement of photovoltage generation and efficiency of a dye-sensitized photoelectrochemical device. This material when diluted and strongly agitated, together termed as potentized, is used as nanomedicine for centuries. This study using this material at two different potencies (6C and 30C) shows that addition of this material to thionine dye of concentration 0.85 μM enhances photovoltage generation significantly. The efficiency obtained with the latter is ~0.41%, whereas it is ~0.003% with dye only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号