首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  国内免费   2篇
无线电   8篇
一般工业技术   3篇
冶金工业   4篇
  2023年   2篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2013年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
To minimize the deviation of the predicted creep curves obtained under constant load conditions by the original θ projection model, a new modified version that can be expressed by ε=θ11-e-θ2t+θ3eθ4eθ5εt-1, was derived and experimentally validated in our last study. In the present study, the predictive capability of the modified θ projection model was investigated by comparing the simulated and experimentally determined creep curves of K465 and DZ125 superalloys over a range of temperatures and stresses. Furthermore, the linear relationship between creep temperature and initial stress was extended to the 5-parameter model. The results indicated that the modified model could be used as a creep life prediction method, as it described the creep curve shape and resulted in predictions that fall within a specified error interval. Meanwhile, this modified model provides a more accurate way of describing creep curves under constant load conditions. The limitations and future direction of the modified model were also discussed. In addition, this modified θ projection model shows great potential for the evaluation and assessment of the service safety of structural materials used in components governed by creep deformation.  相似文献   
2.
Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short‐circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite‐only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high‐performance devices.  相似文献   
3.
Boron additions to Ni-based superalloys are considered to be beneficial to the creep properties of the alloy, as boron has often been reported to increase grain boundary cohesion, increase ductility, and promote the formation of stable boride phases. Despite the importance, it is not well understood whether these improvements are associated with the presence of elemental boron or stable borides along the grain boundaries. In this investigation, two experimental powder-processed Ni-based superalloys containing elevated levels of Nb were found to exhibit increased solubility for B in the γ matrix when compared to similar commercial Ni-based superalloys. This resulted in an overall lower B concentration at grain boundaries that suppressed boride formation. As the predictive capability of CALPHAD database models for Ni-based superalloys have improved over the years, some discrepancies may still persist around compositionally heterogeneous features such as grain boundaries. Improved quantification of the characteristic partitioning of B as a function of the bulk alloy composition is required for understanding and predicting the stability of borides.  相似文献   
4.
Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm?3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated.  相似文献   
5.
The synthesis and characterization four diketopyrrolopyrrole containing conjugated polymers for use in organic photovoltaics is presented. Excellent energy level control is demonstrated through heteroatomic substitution whilst maintaining similar solid state properties as shown by X‐ray diffraction and atomic force microscopy. Inverted solar cells were fabricated with the best devices having short circuit currents exceeding 16 mA cm?2 and efficiencies of over 5% irrespective of whether [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC60BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM) is used. Transient absorption spectroscopy on the bulk heterojunction blends shows efficient charge photo‐generation, with the variations in short circuit current correlated to the energetic offset between polymer and fullerene.  相似文献   
6.
A combination of high‐resolution mapping techniques is developed to probe the homogeneity and defects of mesoscopic perovskite solar cells. Three types of cells using a one‐step infiltration process with methylammonium lead iodide (MAPbI3) or 5‐ammoniumvaleric acid‐MAPbI3 solutions, or two‐step process with MAPbI3 solution are investigated. The correlation between photoluminescence, photocurrent, electroluminescence, and Raman maps gives a detailed understanding of the different infiltration mechanisms, electronic contact at interfaces, and effect on local photocurrent for the cells. The one‐step MAPbI3 cell has very limited infiltration of the perovskite solution which results in poor device performance. High loading of the mesopores of the TiO2 and ZrO2 scaffold is observed when using 5‐ammoniumvaleric acid, but some micrometer‐sized non‐infiltrated areas remain due to dense carbon flakes hindering perovskite infiltration. The two‐step cell has a complex morphology with features having either beneficial or detrimental effects on the local photocurrent. The results not only provide key insights to achieving better infiltration and homogeneity of the perovskite film in mesoporous devices but can also aid further work on planar devices to develop efficient extraction layers. Moreover, this multi‐mapping approach allows the correlation of the local photophysical properties of full perovskite devices, which would be challenging to obtain by other techniques.  相似文献   
7.
Perovskite solar cells have attracted a great deal of attention thanks to their high efficiency, ease of manufacturing, and potential low cost. However, the stability of these devices is considered their main drawback and needs to be addressed. Mesoporous carbon perovskite solar cells (m‐CPSC), consisting of three mesoporous layers (TiO2/ZrO2/C) infiltrated with CH3NH3PbI3 (MAPI) perovskite, have presented excellent lifetimes of more than 10 000 h when the additive NH2(CH2)4CO2HI (5‐ aminovaleric acid iodide; 5‐AVAI) is used to modify the perovskite structure. Yet, the role of 5‐AVAI in enhancing the stability has yet to be determined. Here, superoxide‐mediated degradation of MAPI m‐CPSC with and without the 5‐AVAI additive is studied using the fluorescence probe dihydroethidium for superoxide detection. In situ X‐ray diffractometry shows that aminovaleric acid methylammonium lead iodide (AVA‐MAPI) perovskite infiltrated in mesoporous layers presents higher stability in an ambient environment under illumination, evidenced by a slower decrease of the MAPI/PbI2 peak ratio. Superoxide yield measurements demonstrate that AVA‐MAPI generates more superoxide than regular MAPI when deposited on glass but generates significantly less when infiltrated in mesoporous layers. It is believed that superoxide formation in m‐CPSC is dependent on a combination of competitive factors including oxygen diffusion, sample morphology, grain size, and defect concentration.  相似文献   
8.
Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T‐2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T‐2OD:FBR blends. This is assigned to the smaller LUMO‐LUMO offset of the PffBT4T‐2OD:FBR blends relative to PffBT4T‐2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T‐2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.  相似文献   
9.
Here, the formation of carbon nanotube (CNT)-based nanohybrids in aqueous solution is reported, where DNA-wrapped CNTs (DNA-CNTs) act as templates for the growth of PbS and CdS nanocrystals, toward the formation of PbS-DNA-CNT and CdS-DNA-CNT heterostructures. Solution-processed multiplexed photoresponsive devices are fabricated from these nanohybrids, displaying a sensitivity to a broad range of illumination wavelengths (405, 532, and 650 nm). The DNA-CNT and CdS-DNA-CNT devices show a drop in the current while PbS-DNA-CNT's current increases upon light illumination, indicating a difference in the operational mechanisms between the hybrids. Furthermore, the ON/OFF photoresponse of PbS-DNA-CNT is only 1 s as compared to 200 s for the other two nanohybrid devices. The mechanisms of the different photoresponses are investigated by comparing the performance under an inert and air atmosphere, and gate dependence device analysis and transient absorption spectroscopy measurements are also conducted. The results reveal that photoinduced oxygen desorption is responsible for the slower photoresponse by DNA-CNT and CdS-DNA-CNT, while photoinduced charge transfer dominates the much faster response of PbS-DNA-CNT devices. The strategy developed is of general applicability for the bottom-up assembly of CNT-based nanohybrid optoelectronic systems and the fabrication of solution-processable multiplexed devices.  相似文献   
10.
Metallurgical and Materials Transactions A - Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号