首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
轻工业   1篇
冶金工业   1篇
  2021年   1篇
  2020年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
The effect of a chitosan coating and Mentha aquatica L. essence on Iranian white cheese was investigated. Results showed 100% inhibition of Escherichia coli growth using 1.5% essence after 10 days. After 15 days of incubation, the Staphylococcus aureus population was reduced by 44.2%, 70.0%, and 88.5% using 0.5, 1.0 and 1.5% essence, respectively. After 15 days, Listeria monocytogenes growth was inhibited by 63.84%, 70.12%, and 85.9% using 0.5, 1.0, and 1.5% essence, respectively. Inhibition zone diameter studies also confirmed the antibacterial effects of applied coating against all the above‐mentioned bacteria in Iranian white cheese.  相似文献   
2.

A new post-weld heat treatment (PWHT) cycle was designed for novel dissimilar linear friction welding (LFW) of selective laser melted (SLM) Inconel 718 (IN718) to AD730 forged nickel-based superalloy. The microstructure and hardness of the joints after the PWHT are investigated and compared with those of as-linear friction welded samples. The precipitation of γ′ + γ″ is determined as the main mechanism to increase the mechanical properties of SLM IN718 alloy. These particles coarsened during heat treatment at 1253 K and double aging. The results show that the thermomechanical history of linear friction welded joints can affect the microstructure of IN718 alloy such as the morphology of δ phase after solution treatment (ST) from the platelike in the weld zone (WZ) to the needlelike in the base material (BM). It was found that in AD730, nanometric size γ′ particles reprecipitated close to the weld line during rapid cooling after welding. The presence of ultrafine γ′ particles and coarsening of the remaining particles in the microstructure of the alloy, during PWHT, can enhance the strength and hardness. The developed PWHT resulted in uniform hardness across the new dissimilar joint.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号