首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   5篇
化学工业   4篇
金属工艺   11篇
机械仪表   2篇
能源动力   1篇
无线电   4篇
一般工业技术   10篇
冶金工业   7篇
  2021年   3篇
  2019年   1篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.

Quenching and partitioning (Q&P) and a novel combined process of hot straining (HS) and Q&P (HSQ&P) treatments have been applied to a TRIP-assisted steel in a Gleeble®3S50 thermomechanical simulator. The heat treatments involved intercritical annealing at 800 °C and a two-step Q&P heat treatment with a partitioning time of 100 seconds at 400 °C. The “optimum” quench temperature of 318 °C was selected according to the constrained carbon equilibrium (CCE) criterion. The effects of high-temperature deformation (isothermal and non-isothermal) on the carbon enrichment of austenite, carbide formation, and the strain-induced transformation to ferrite (SIT) mechanism were investigated. Carbon partitioning from supersaturated martensite into austenite and carbide precipitation were confirmed by means of atom probe tomography (APT) and scanning transmission electron microscopy (STEM). Austenite carbon enrichment was clearly observed in all specimens, and in the HSQ&P samples, it was significantly greater than in Q&P, suggesting an additional carbon partitioning to austenite from ferrite formed by the deformation-induced austenite-to-ferrite transformation (DIFT) phenomenon. By APT, the carbon accumulation at austenite/martensite interfaces was observed, with higher values for HSQ&P deformed isothermally (≈ 11 at. pct), when compared with non-isothermal HSQ&P (≈ 9.45 at. pct) and Q&P (≈ 7.6 at. pct). Moreover, a local Mn enrichment was observed in a ferrite/austenite interface, indicating ferrite growth under local equilibrium with negligible partitioning (LENP).

  相似文献   
2.
3.
Focussed ion beam milling has greatly extended the utility of the atom probe and transmission electron microscope because it enables sample preparation with a level of dimensional control never before possible. Using focussed ion beam it is possible to extract the samples from desired and very specific locations. The artefacts associated with this sample preparation method must also be fully understood. In this work, issues specifically relevant to the focussed ion beam milling of aluminium alloys are presented. After using the focussed ion beam as a sample preparation technique it is evident that gallium will concentrate in three areas of the sample: on the surface, on grain boundaries and at interphase boundaries. This work also shows that low-energy Ar ion nanomilling is potentially quite effective for removing gallium implantation layers and gallium from the internal surfaces of aluminium thin foils.  相似文献   
4.
Metallurgical and Materials Transactions A - The bondline of electric-resistance-welded (ERW) linepipe steel, often etched white (i.e., ferrite) in optical microscopy, is generally believed to be...  相似文献   
5.
Crystalline high‐entropy ceramics (CHC), a new class of solids that contain five or more elemental species, have attracted increasing interest because of their unique structure and potential applications. Up to now, only a couple of CHCs (e.g., high‐entropy metal oxides and diborides) have been successfully synthesized. Here, a new strategy for preparing high‐entropy metal nitride (HEMN‐1) is proposed via a soft urea method assisted by mechanochemical synthesis. The as‐prepared HEMN‐1 possesses five highly dispersed metal components, including V, Cr, Nb, Mo, Zr, and simultaneously exhibits an interesting cubic crystal structure of metal nitrides. By taking advantage of these unique features, HEMN‐1 can function as a promising candidate for supercapacitor applications. A specific capacitance of 78 F g?1 is achieved at a scan rate of 100 mV s?1 in 1 m KOH. In addition, such a facile synthetic strategy can be further extended to the fabrication of other types of HEMNs, paving the way for the synthesis of HEMNs with attractive properties for task‐specific applications.  相似文献   
6.
MXenes exhibit excellent capacitance at high scan rates in sulfuric acid aqueous electrolytes, but the narrow potential window of aqueous electrolytes limits the energy density. Organic electrolytes and room-temperature ionic liquids (RTILs) can provide higher potential windows, leading to higher energy density. The large cation size of RTIL hinders its intercalation in-between the layers of MXene limiting the specific capacitance in comparison to aqueous electrolytes. In this work, different chain lengths alkylammonium (AA) cations are intercalated into Ti3C2Tx, producing variation of MXene interlayer spacings (d-spacing). AA-cation-intercalated Ti3C2Tx (AA-Ti3C2), exhibits higher specific capacitances, and cycling stabilities than pristine Ti3C2Tx in 1 m 1-ethly-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile and neat EMIMTFSI RTIL electrolytes. Pre-intercalated MXene with an interlayer spacing of ≈2.2 nm, can deliver a large specific capacitance of 257 F g−1 (1428 mF cm−2 and 492 F cm−3) in neat EMIMTFSI electrolyte leading to high energy density. Quasi elastic neutron scattering and electrochemical impedance spectroscopy are used to study the dynamics of confined RTIL in pre-intercalated MXene. Molecular dynamics simulations suggest significant differences in the structures of RTIL ions and AA cations inside the Ti3C2Tx interlayer, providing insights into the differences in the observed electrochemical behavior.  相似文献   
7.
Ionicity plays an important role in determining material properties, as well as optoelectronic performance of organometallic trihalide perovskites (OTPs). Ion migration in OTP films has recently been under intensive investigation by various scanning probe microscopy (SPM) techniques. However, controversial findings regarding the role of grain boundaries (GBs) associated with ion migration are often encountered, likely as a result of feedback errors and topographic effects common in to SPM. In this work, electron microscopy and spectroscopy (scanning transmission electron microscopy/electron energy loss spectroscopy) are combined with a novel, open‐loop, band‐excitation, (contact) Kelvin probe force microscopy (BE‐KPFM and BE‐cKPFM), in conjunction with ab initio molecular dynamics simulations to examine the ion behavior in the GBs of CH3NH3PbI3 perovskite films. This combination of diverse techniques provides a deeper understanding of the differences between ion migration within GBs and interior grains in OTP films. This work demonstrates that ion migration can be significantly enhanced by introducing additional mobile Cl? ions into GBs. The enhancement of ion migration may serve as the first step toward the development of high‐performance electrically and optically tunable memristors and synaptic devices.  相似文献   
8.
To fabricate oxide dispersion strengthened bond coatings, commercial Co–30wt-%Ni–20Cr–8Al–0?4Y powder was milled with 2% additions of Al2O3, Y2O3 or Y2O3 + HfO2. Low-pressure plasma sprayed, free-standing specimens were oxidised in air + 10%H2O at 1100 °C both isothermally (100 h) and in 500, 1?h cycles. Dry air cyclic testing conducted at both ORNL and FZJ showed remarkably similar results. In general, the water vapour addition caused more scale spallation. Two LPPS specimens without oxide additions were tested for comparison. The specimens with 2%Al2O3 addition exhibited the best behaviour as the powder already contained 0?4%Y. Additions of 2%Y2O3 and especially 1%Y2O3 + 1%HfO2 resulted in over-doping as evidenced by high mass gains and the formation of Y- and Hf-rich pegs. Scanning transmission electron microscopy of the isothermal specimens showed no Hf and/or Y segregation to the alumina scale grain boundaries in the over-doped specimens.  相似文献   
9.
This study focuses on the microstructural features that enhance the resistance of ALLVAC 718Plus to grain boundary creep cracking during testing of samples at 704 °C in both dry and moist air. Fully recrystallized structures were found to be susceptible to brittle grain boundary cracking in both environments. Detailed transmission electron microscopy (TEM) microstructural characterization reveals features that are believed to lead to resistance to grain boundary cracking in the resistant microstructures. It is suggested that dislocation substructures found within the grains of resistant structures compete with the high-angle grain boundaries for oxygen, thereby reducing the concentration of oxygen on the grain boundaries and subsequent embrittlement. In addition, electron backscatter diffraction (EBSD) misorientation maps reveal that special boundaries (i.e., Σ3 boundaries) resist cracking. This is in agreement with previous findings on the superalloy INCONEL 718. Furthermore, it is observed that cracks propagate along high-angle boundaries. This study also shows that in this case, the presence of delta phase at the grain boundaries does not by itself produce materials that are resistant to grain boundary cracking.  相似文献   
10.
A new phosphate-free pretreatment from Henkel Corp. named TecTalis®, was investigated. The treatment bath is composed of dilute hexafluorozirconic acid with small quantities of non-hazardous components containing Si and Cu. The corrosion resistance of treated steel was compared to samples treated in a phosphate conversion coating bath, in simple hexafluorozirconic acid and in TecTalis without the addition of the Cu-containing component. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to characterize the coating surface morphology, structure and composition. A Quartz Crystal Microbalance (QCM) was used for studying film growth kinetics on thin films of pure Fe, Al and Zn. Electrochemical Impedance Spectroscopy (EIS) was performed on treated and painted steel for studying long-term corrosion performance of the coatings. The phosphate-free coating provided long-term corrosion performance comparable to that of phosphate conversion coatings. The coatings uniformly cover the surface in the form of 10–20 nm sized nodules and clusters of these features up to 500 nm in size. The coatings are usually about 20–30 nm thick and are mostly composed of Zr and O with enrichment of copper at randomly distributed locations and clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号