首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
冶金工业   1篇
自动化技术   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Rigorous control synthesis for an unmanned aerial vehicle necessitates the availability of a good, reasonable model for such a vehicle. The work reported in this paper focuses on the modeling of a rotary unmanned aerial vehicle (RUAV) and the development of a robust controller that can handle parameter uncertainties and disturbances. The parameters of the plant model are obtained through the use of the prediction error method with real flight data. The response of the identified linear model shows a good match with the measured flight data. The H control scheme is applied to obtain a robustly stable controller using the identified model. The proposed controller is analyzed using frequency-domain analysis and time-domain simulations. The performance of the proposed H controller is better than that of the conventional proportional derivative controller in that the proposed controller has a shorter settling time and less overshoot. Furthermore, the degradation of the proposed controller performance is negligible and stability is maintained when the input gains to the plant are doubled, which demonstrates the good performance and robustness of the controller.  相似文献   
2.
The problem of stabilization of a model helicopter in a hover configuration subject to parametric uncertainty and external disturbances is addressed. Multiinput multioutput (MIMO) proportional-integral-derivative (PID) control law is reformulated into a full-state feedback control law to synthesize the controller by using robust H∞ control theory. In full-state feedback representation, PID control has implicit integral-backstepping structure. Therefore a new parameter, ρ, can be introduced that acts on the derivative of the control signal. The parameters of MIMO PID controller are then obtained with solving the algebraic Riccati equation with selecting the values of ρ and γ. Model helicopter simulation is carried out to verify the performance of the proposed controller to stabilize the uncertain helicopter model and to suppress external disturbances.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号