首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
一般工业技术   3篇
冶金工业   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
This paper considers the vertical vibrations of an elastic circular plate in a multilayered poroelastic half space. The plate is subjected to axisymmetric time–harmonic vertical loading and its response is governed by the classical thin-plate theory. The contact surface between the plate and the multilayered half space is assumed to be smooth and either fully permeable or impermeable. The half space under consideration consists of a number of layers with different thicknesses and material properties and is governed by Biot’s poroelastodynamic theory. The vertical displacement of the plate is represented by an admissible function containing a set of generalized coordinates. Contact stress and pore pressure jump are established in terms of generalized coordinates through the solution of flexibility equations based on the influence functions corresponding to vertical and pore pressure loading. Solutions for generalized coordinates are obtained by establishing the equation of motion of the plate through the application of Lagrange’s equations of motion. Selected numerical results are presented to portray the influence of various parameters on dynamic interaction between an elastic plate and a multilayered poroelastic half space.  相似文献   
2.
1-3 Piezocomposites are made by embedding piezoelectric fibers/rods in polymer matrix materials. Fiber–matrix interface fracture can affect the performance of piezocomposites. In this paper, axisymmetric interfacial cracks in piezocomposites are studied by considering an idealized model of a single piezoelectric fiber in a matrix material. The displacement discontinuity method is used to formulate the Mode I and II crack problems. The fundamental solutions required for DDM are derived explicitly by using the electroelastic field equations and Fourier integral transforms. The dependence of Mode I and II stress intensity factors of single and multiple interface cracks on fiber and matrix material properties, crack length and distance between cracks are investigated.  相似文献   
3.
This paper considers the electro-mechanical interaction between a fiber and a matrix material in a 1–3 piezocomposite due to an axial load and electric charge applied to the fiber. The fiber–matrix interface is assumed to be mechanically imperfect and is represented by a spring-factor model. The interface is either electrically open- or short-circuited. The analytical general solutions corresponding to an infinite piezoelectric fiber with a vertical body force and an electric body charge are derived by using Fourier integral transforms. These solutions together with the analytical general solutions for a transversely isotropic elastic medium are used to formulate the fiber–matrix interaction problem. Selected numerical results for the fiber axial force and vertical electric field, and interfacial stresses are presented for representative 1–3 piezocomposites. The influence of the interface stiffness on the electro-mechanical load diffusion is also examined.  相似文献   
4.
Modern fuel injectors have been developed based on piezoelectric stack actuators. Performance and durability of actuators in a hydrogen environment are important considerations in the development of hydrogen injectors. 2D plane stress and 3D models for analysis of coupled diffusion and thermo-electromechanical response of actuators are presented. Chemical potential, electric field and temperature gradients are taken as driving forces for hydrogen transport. The explicit Euler finite difference method is used to solve the nonlinear diffusion governing equation. The finite element method is used for time-dependent analysis of fully coupled mechanical, electric and thermal fields. The diffusion process and thermo-electromechanical deformations are coupled through the dependence of piezoelectric properties on hydrogen concentration. Experimental results for the piezoelectric coefficient d 33 of PZT ceramics exposed to different hydrogen concentrations are used. A comparison of a fully coupled 2D model with 2D and 3D models with reduced coupling is made to examine the significance of coupling and computational efficiency. Selected numerical results are presented for time histories of hydrogen concentration, temperature and stroke of an idealized actuator unit cell to obtain a preliminary understanding of the performance of actuators exposed to hydrogen.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号