首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   1篇
冶金工业   7篇
自动化技术   1篇
  2011年   2篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 93 毫秒
1
1.
Odorants and their perceptions differ along multiple dimensions, requiring that a critical examination of any putative neural code directly assess the multidimensional nature of the encoding process. Previous work has examined simple, systematic odorant differences that, regardless of coding strategy, would be expected to produce simple, systematic predictions in neural and behavioral responses. In the present study, an odorant identification confusion matrix task that extracts precise quality relationships across odorants was used to determine whether spatially specific glomerular activity patterns predict perceptual quality relationships for odorants that cannot easily be classified a priori along a single chemical dimension. Multidimensional scaling (MDS) analysis of odorant pattern similarity measures derived from the comparison of [14C]-2-deoxyglucose glomerular activity pattern data yielded a two-dimensional odorant activity space that was highly significantly predictive of similarly obtained odorant perceptual spaces, uniformly across animals. These results strongly support the relevance of global spatial patterns in the olfactory bulb to the encoding of odor quality. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
2.
To test the hypothesis that odorant quality perception is altered in olfactory marker protein (OMP)-null mice, we trained and tested adult OMP-null and control mice, using a 5-odorant identification confusion matrix task (animal odorant confusion matrix [AOCM]). On average, control and null mice performed the task at equivalent levels. The composite 5?×?5 response matrix from 40 testing sessions for each subject (both OMP-null and control) was compared with that of every other subject, yielding a dissimilarity matrix of AOCM responses. A multidimensional scaling (MDS) analysis of the dissimilarity data yielded a 4-dimensional solution, with each mouse occupying a point in MDS animal space. Statistical analysis demonstrated significant effects of genotype in determining the location of a mouse in the MDS space. These data suggest, therefore, that compared with that of controls, odorant quality perception is altered in the OMP-null mouse. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
3.
The chemical quality of forage may determine landscape use and habitat quality for some herbivorous species. However, studies that investigate the relationship between foliar chemistry and foraging choices in wild vertebrates are rare. Petauroides volans (the greater glider) is unique among Australian marsupial folivores because it glides. It also frequently consumes foliage from both major Eucalyptus subgenera, Eucalyptus (common name “monocalypt”) and Symphyomyrtus (common name “symphyomyrtle”), which differ markedly in their foliar chemistry. Such differences are thought to be a product of co-evolution that also led to guild-specific plant secondary metabolite (PSM) specialization among other marsupial eucalypt folivores. To explore whether foliar chemistry influences tree use, we analyzed foliage from eucalypt trees in which we observed P. volans during a radio tracking study and from eucalypt trees in which animals were never observed. We used a combination of chemical assays and near infrared spectrophotometry (NIRS) to determine concentrations of nitrogen (N), in vitro available nitrogen (AvailN), and in vitro digestible dry matter (DDM) from foliage sampled from the monocalypt and symphyomyrtle species, and total formylated phloroglucinol compounds (FPCs) and sideroxylonals (a class of FPCs) from the symphyomyrtle species (FPCs do not occur in monocalypts). Tree size and spatially-dependent, intraspecific variations in sideroxylonals and DDM concentrations in the symphyomyrtle foliage and of N, AvailN, and DDM in the monocalypt species were important indicators of tree use and habitat suitability for P. volans. The results i) demonstrate that guild-specific PSMs do not always lead to guild-specific foraging; ii) provide a compelling co-evolutionary case for the development of gliding in P. volans; and iii) have implications for the management and conservation of this and other folivorous species.  相似文献   
4.
Mice from which the olfactory marker protein (OMP) gene has been deleted demonstrate a number of neurophysiologic and behavioral defects that suggest OMP is an important component in olfactory signal transduction and is critically involved in odor processing. Recently, the potential pleiotropic effects of gene deletion were addressed by adenoviral vector-mediated rescue of the neurophysiologic defects, in vivo. As a complement to this study, the authors used a recombinant adenoviral vector to transiently introduce OMP into olfactory sensory neurons of adult OMP-null mice and, using psychophysical methods, demonstrated the resulting reacquisition of behavioral function subsequent to gene replacement. The rescue of the OMP-null behavioral phenotype further supports the hypothesis that OMP is an important component in olfactory signal amplification and/or transduction processing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
5.
Human fetal ethanol exposure is strongly associated with ethanol avidity during adolescence. Evidence that intrauterine olfactory experience influences chemosensory-guided postnatal behaviors suggests that an altered response to ethanol odor resulting from fetal exposure may contribute to later abuse risk. Using behavioral and neurophysiological methods, the authors tested whether ethanol exposure via the dam's diet resulted in an altered responsiveness to ethanol odor in infant and adult rats. Compared with controls, (a) fetal exposure tuned the neurophysiologic response of the olfactory epithelium to ethanol odor at some expense to its responsiveness to other odorants in infantile rats--this effect was absent in adults; (b) the neural effect in infantile rats was paralleled by an altered behavioral response to ethanol odor that was specific to this odorant--this effect was also absent in adults; and (c) a significant component of the infantile behavioral effect was attributable to ethanol's effect on the olfactory neural modality. These data provide evidence for an important relationship between prenatal ethanol experience and postnatal behavioral responsiveness to the drug that is modulated or determined by olfactory function. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
6.
The present study assessed the functional consequences of peripheral olfactory destruction on the minimum detectable levels of stimulation for the odorants 2-propanol, D-limonene, and ethyl acetoacetate. Using standard operant techniques, eight Long-Evans rats were trained to criterion on an air versus odor differential response task. Odorant threshold was then determined on 10 consecutive testing sessions, using a computer-automated olfactometer and psychophysical tracking procedure. Following the last testing session, the rats were lesioned by exposing them to 330 ppm methyl bromide gas for 6 h. For each lesioned animal the anatomical state of the olfactory epithelium was evaluated relative to behavioral performance on the odorant threshold task at 3 days postlesion. For the group of rats, a comparison of pre- and postlesion performance demonstrated that, on the average, odor sensitivity was not altered by lesions that destroy roughly 95-98% of the epithelium. However, analysis of individual cases illustrated that two of the eight rats showed an elevation in odor sensitivity, albeit minimally, that was considered different from the prelesion performance. For those animals affected, we could extract no apparent relationship between the behavioral findings and the extent of anatomical damage. The results of this study demonstrate the remarkable capacity of the olfactory system to maintain normal or near-normal detection sensitivity in the face of massive damage. This capacity presumably reflects both the normal exposure of the epithelium to continual injury and the importance of maintained olfactory function for the survival of the animal.  相似文献   
7.
Successful discrimination of a variety of natural and urban landscape components has been achieved with remote sensing data using multiple endmember spectral mixture analysis (MESMA). MESMA is a spectral matching algorithm that addresses spectral variability by allowing multiple reference spectra (i.e., endmembers) to represent each material class. However, materials that have a high-degree of spectral similarity between classes, such as similar plant-types or closely related plant species, and large variations in albedo present an ongoing challenge for accurate class discrimination with imaging spectrometry. Continuum removal (CR) analysis may improve class separability by emphasizing individual absorption features across a normalized spectrum. The spectral and structural characteristics common to most Eucalyptus trees make them notoriously difficult to discriminate in closed-canopy forests with imaging spectrometry. We evaluated whether CR applied to hyperspectral remote sensing data improved the performance of MESMA in classifying and mapping nine eucalypt tree species according to the two major Eucalyptus subgenera, Eucalyptus (common name “monocalypt”) and Symphyomyrtus (common name “symphyomyrtle”). Mixed-canopies comprised of monocalypts and symphyomyrtles are common in Australia, although their spatial distribution is not random. The ability to map these functional types on a landscape-scale could provide important information about ecosystem processes, landscape disturbance history and wildlife habitat. We created a spectral library of 229 pixels from 37 symphyomyrtle tree canopies and 406 pixels from 62 monocalypt tree canopies selected from HyMap imagery and verified with field data. Based on these reference data, we achieved overall classification accuracies at the subgenera-level of 75% (Kappa 0.48) for non-CR spectra and 83% (Kappa 0.63) for the CR spectra. We found that continuum-removal improved the classification performance of most endmember-models, although a larger portion of pixels remained unmodeled with the CR spectra (2%) compared to the non-CR spectra (0%). We utilized a new method for model optimization and created maps of monocalypt and symphyomyrtle distribution in our study area based on our best performing endmember-models. Our vegetation maps were largely consistent with our expectations of subgenera distribution based on our knowledge of the region.  相似文献   
8.
Using a 5-odorant identification confusion matrix task, the authors assessed the consequence of olfactory epithelial damage on odorant quality perception in the rat. After establishing prelesion identification performance, each rat's epithelium was subjected to 330 ppm methyl bromide gas for 6 hr. Comparison of prelesion and 3-day postlesion performance demonstrated a significant decrease in identification as a consequence of 95%-98% epithelial destruction. Further, there was a differential effect of lesion on the ability of different animals to identify the different individual odorants. Evaluation of the anatomical state of the epithelium relative to performance on the identification task demonstrated a significant relationship between the extent and location of anatomical sparing and changes in individual odorant identifications. Assessment of pre- and postlesion quality perception for the individual rats demonstrated a highly significant shift in quality perception that was independent of any decrease in performance. These results provide strong support for the proposition that the regional variations in mucosal sensitivities within and across olfactory receptor gene expression zones are fundamentally important for the encoding of odorant quality. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
9.
Clinical and epidemiological studies provide strong data for a relationship between prenatal ethanol exposure and the risk for abuse in adolescent and young adult humans. However, drug-acceptance results in response to fetal exposure have differed by study, age at evaluation, and experimental animal. In the present study, the authors tested whether voluntary ethanol intake was enhanced in both the infantile and adult rat (15 and 90 days of age, respectively), as a consequence of chronic fetal drug experience. Experimental rats were exposed in utero by administering ethanol to a pregnant dam in a liquid diet during gestational Days 6-20. Compared with those for isocaloric pair-fed and ad lib chow control animals, the results for experimental animals demonstrated that fetal exposure significantly increased infantile affinity for ethanol ingestion without affecting intake patterns of an alternative fluid (water). Heightened affinity for ethanol was absent in adulthood. Moreover, the results argue against malnutrition as a principal factor underlying the infantile phenomenon. These data add to a growing literature indicative of heightened early postnatal acceptance patterns resulting from maternal use or abuse of ethanol during pregnancy. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号