首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   4篇
综合类   1篇
化学工业   11篇
金属工艺   20篇
机械仪表   1篇
能源动力   5篇
无线电   2篇
一般工业技术   39篇
冶金工业   24篇
自动化技术   1篇
  2021年   1篇
  2020年   5篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   5篇
  2009年   11篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   8篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1991年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
Green bodies prepared by compaction of alumina granules were made transparent by an immersion liquid technique, and the internal structure was characterized with an optical microscope to study the effect of forming pressure on the internal structure. Clear images obtained by the technique provide more detailed information than other existing methods for structures ranging from one to tens of micrometers. Intergranular pores were present between unfractured granules. Their sizes and concentration tended to decrease with increasing forming pressure. However, pores were clearly present even in the green body prepared at 600 MPa. A rod- and needlelike feature was also found and was concluded to correspond to a high-density region. The significance of large pores and high-density regions on processing as well as the details of the technique is discussed.  相似文献   
2.
The extrusion/equal channel angular pressing (EX-ECAP) processing procedure, in which magnesium-based alloys are subjected to extrusion followed by ECAP, was applied to a Mg-7.5 pct Al-0.2 pct Zr alloy prepared by casting. Microstructural inspection showed the EX-ECAP process was effective in reducing the grain size from ∼21 μm after extrusion to an as-pressed grain size of ∼0.8 μm. It is shown through static annealing that these ultrafine grains are reasonably stable up to 473 K, but grain growth occurs at higher temperatures. Tensile specimens were cut from the billets prepared by EX-ECAP and testing showed these specimens exhibited superplasticity at relatively low temperatures with maximum elongations up to >700 pct. By processing through EX-ECAP to a higher imposed strain and thereby increasing the area fraction of high-angle boundaries, it is demonstrated that there is a potential for achieving high-strain-rate superplasticity. This article is based on a presentation made at the Symposium entitled “Phase Transformations and Deformation in Magnesium Alloys,” which occurred during the Spring TMS meeting, March 14–18, 2004, in Charlotte, NC, under the auspices of the ASM-MSCTS Phase Transformations Committee.  相似文献   
3.
Experiments were conducted to evaluate the utility of a new processing procedure developed for Mg-based alloys in which samples are subjected to a two-step processing route of extrusion followed by equal-channel angular pressing (designated as EX-ECAP). The experiments were conducted using a Mg-0.6 wt pct Zr alloy and, for comparison purposes, samples of pure Mg. It is shown that the potential for successfully using ECAP increases in both materials when adopting the EX-ECAP procedure. For the Mg-Zr alloy, the use of EX-ECAP produces a grain size of ∼1.4 μm when the pressing is undertaken at 573 K. By contrast, using EX-ECAP with pure Mg at 573 K produces a grain size of ∼26 μm. Tensile testing of the Mg-Zr alloy at 523 and 573 K after processing by EX-ECAP revealed the occurrence of significantly enhanced ductilities with maximum elongations of ∼300 to 400 pct.  相似文献   
4.
Carbon nanotube (CNT) reinforced nanostructured Cu matrix composite with a grain size less than 25 nm has been successfully fabricated via a combination of ball milling and high-pressure torsion. CNTs were found to be homogeneously dispersed into the metal matrix, leading to grain refinement with a narrow grain size distribution and significant increase in hardness.  相似文献   
5.
This study addresses a hydrogen effect on the tensile properties of a type 310S austenitic stainless steel with ultrafine-grained structures produced by high-pressure torsion (HPT) and subsequent annealing. The mean grain size was reduced to ~85 nm by the HPT processing. The grain size was increased by the post-HPT annealing, but the grain size of ~265 nm was retained after annealing at 1023 K (750 °C). The tensile strength of ~1.2 GPa, which is approximately twice as much as that of the solution-treated specimen, was attained in the 1023 K (750 °C) post-HPT-annealed specimen. The elongation to failure was restored up to ~15 pct by the post-HPT annealing, although it was still insufficient in comparison with the ~55 pct elongation of the solution-treated specimen. There was no change in the tensile strength of the HPT-processed specimens and the post-HPT-annealed specimens by hydrogen charging with the hydrogen content in the range of ~20 to 40 mass ppm. The HPT-processed and the 773 K (500 °C) post-HPT-annealed specimens exhibited a ductility loss through the fully shear type fracture. The hydrogen charge into higher temperature post-HPT-annealed specimens with σ-FeCr precipitates led to a mild hydrogen embrittlement.  相似文献   
6.
Metallurgical and Materials Transactions A - This study examines strain distribution occurring in the high-pressure sliding (HPS) processing for rods of pure Al and an AZ61 alloy. The strain...  相似文献   
7.
A rotating magnetic field was used to fabricate c-axis oriented zinc oxide. The influence of rotating speed on orientation structure was also examined. The aligned axes had the largest diamagnetic susceptibility, which axis was difficult to align with a static magnetic field. In c-axis oriented ZnO, the degree of orientation (Lotgering factor) in the green compact ranged from 0.2 to 0.5 along c-axis. The Lotgering factor increased with rotating speed. For all samples with the rotating magnetic field, the degrees of orientation increased up to above 0.9 after sintering at 1573 K.  相似文献   
8.
9.
Transmission electron microscopy (TEM) samples of an Mg-Al alloy has been prepared using a Ga-focused ion beam (FIB) milling at two different operating voltages of 10 kV and 40 kV to investigate the influence of the FIB energy on the sample quality. The fine structures of the samples have been studied using a high resolution TEM, and the concentration of the implanted Ga was analysed using an energy dispersive X-ray (EDX) analysis. The result of the TEM observation revealed that point defects were introduced to the sample finally milled at 40 kV but not at 10 kV. However, crystal lattice images and electron diffraction patterns were clearly observed on both the samples. The typical influence of the FIB energy was indicated in the elemental analysis. The relative Ga concentration in the thin sample finally milled at 10 kV was 1.0-2.0 at% that is less than half of 4.0-6.0 at% of the Ga concentration in the sample finally milled at 40 kV. A comparison between the experimental results of the Ga concentration measurement with simulation was also discussed.  相似文献   
10.
This study was conducted to elucidate the effects of annealing and hydrogenation on the tensile properties of an Fe–0.01 mass% C alloy processed by high-pressure torsion (HPT). By HPT processing, the tensile strength was increased to ∼1500 MPa through grain refinement. Low-temperature annealing further strengthened the HPT-processed specimen because of a simultaneous effect of carbide precipitation and grain refinement. Reduction in the dislocation density and the fraction of low-angle grain boundaries through warm-temperature annealing led to a decrease in hydrogen uptake when the specimens were exposed to high-pressure gaseous hydrogen, and they became less sensitive to hydrogen embrittlement (HE).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号