首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   6篇
一般工业技术   1篇
原子能技术   7篇
  2021年   1篇
  2020年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
UO2核燃料虽然熔点很高,但在长时问的高燃耗服役下,中心区也会发生熔化现象,因此,必须使用直径较小的燃料元件;同时在高温下UO2燃料由于组分的重布,O的析出会使包壳发生氧化而破坏(PCI)。这些对燃料元件的设计产生很多的限制,研究以下两种方法以改进上述状况:研制环状燃料元件提高燃料燃耗需求;降低燃料O/U增加其与包壳高温相容性。  相似文献   
2.
亚化学计量UO2-x芯块是一种设计新颖的特殊核反应堆用核燃料,很难采用传统压水堆超化学计量UO2+x+U芯块工艺进行制造。本工作采用UO2+x+U混合粉末为原料制备了UO2-x芯块,研究了铀粉表面包覆处理方法、铀粉含量、成型压力、烧结气氛等工艺参数对芯块O/U比、烧结密度和微观结构的影响,探讨了UO2-x环形芯块的亚化学计量形成机理。研究表明,当铀粉加入量(质量分数)分别为0、3%、6%时,芯块O/U比分别为2.010、1.991、1.982,平均晶粒尺寸分别为10、15、20μm;当铀粉加入量为50%时,O/U比为1.943,样品发生熔化。亚化学计量UO2-x芯块必须在干燥惰性气氛中密封保存。  相似文献   
3.
采用草酸铵共沉淀法实现在Gd2O3中掺杂Pr和Ce,以此为原料,硫粉为硫化剂,无水Na2CO3为助熔剂,1000℃真空固相合成了Gd2O2S:Pr和Gd2O2S:Pr,Ce粉末。采用XRD确认了反应产物为目标产物,制备的Gd2O2S:Pr为六方晶系单一相,粉末粒度分布1~10μm,在313 nm的紫外光激发下,主发射峰位于511 nm,属于Pr3+的3P0→3H4跃迁。主发射光强度随Pr3+的含量变化而改变,当Pr3+的含量在0.80%时主发射光强度最大。添加Ce3+可以明显降低Gd2O2S:Pr的荧光余辉,但同时也降低了发射光强度,Ce3+的添加量要在余辉控制,荧光光强和闪烁体使用寿命三者间平衡选择。  相似文献   
4.
研究了U-Mo、U-Mo-X(X=Ti、V、Si)合金及U-Mo/Al、U-Mo-X/Al扩散偶界面层的γ相稳定性,探讨了合金元素和退火工艺对γ相稳定性的影响。结果表明:Mo含量越高,U-Mo合金的γ相稳定性就越高;U-6.5Mo-0.5Si合金的γ相稳定性较高,是因为U Si混合焓较低,但加入Si易导致形成USix脆性相;而U-6.5Mo-0.5Ti和U-6.5Mo-0.5V合金的γ相稳定性较差,是因为Mo在Ti、V体系内具有较低的混合焓,易形成固溶体或金属间化合物,导致γ相贫Mo;随着退火温度从500℃升高至600℃,γ相发生共析分解,扩散层的γ相数量减少,α相增多,α相成为Al的快速扩散通道,促使形成UAl4、UMo2Al20和U6Mo4Al43等富Al相。  相似文献   
5.
本文采用恒速升温和等温烧结实验方法研究了亚化学计量UO2-x燃料芯块的晶粒生长动力学。结果表明,以UO2+x+5%U为原料,可得到密度为94.91%TD~96.23%TD(TD为理论密度)、O与U的原子个数比为1.975~1.990的合格的亚化学计量UO2-x燃料芯块;在烧结温度≤1 650 ℃时晶粒生长速率较低,在烧结温度≥1750 ℃时晶粒生长速率较高;初始晶粒尺寸G0不能忽略不计,亚化学计量UO2-x燃料芯块的晶粒生长动力学符合4次方模型G4-G40=k0texp(-1 000Q/RT),晶粒生长速率常数k0=78.76 μm4/h,激活能Q=433.35 kJ/mol。  相似文献   
6.
亚化学计量U02-x芯块是一种设计新颖的特殊核反应堆用核燃料,很难采用传统压水堆超化学计量U02+x芯块工艺进行制造.本工作采用U02+x+U混合粉末为原料制备了U02-x芯块,研究了铀粉表面包覆处理方法、铀粉含量、成型压力、烧结气氛等工艺参数对芯块O/U比、烧结密度和微观结构的影响,探讨了U02-x环形芯块的亚化学计量形成机理.研究表明,当铀粉加人量(质量分数)分别为0,3%,6%时,芯块O/U比分别为2.010,1.991,1.982,平均晶粒尺寸分别为10,15,20μm;当铀粉加人量为50%时,O/U比为1.943,样品发生熔化.亚化学计量UO2-x芯块必须在干燥惰性气氛中密封保存.  相似文献   
7.
UN燃料具有铀密度高、熔点高、热导率高、热膨胀系数低、辐照稳定性好等优点,是未来空间核电源、核火箭、快堆和ADS的重要候选燃料。本文采用金属铀粉与氮气在300~400℃直接发生化合反应,制得单相U2N3粉末。粒度为38.3 μm的U2N3粉末在1 600 ℃真空热压烧结,制得相对密度为93.5%、存在少量金属铀相的UN陶瓷;而18.1 μm的U2N3粉末在1 550 ℃真空热压烧结,制得相对密度为96.1%、不残留金属铀相的UN陶瓷,U与N的总质量分数为99.57%,每个金属杂质含量均低于50 μg/g,氧含量为1 048 μg/g,碳含量为502 μg/g。U2N3在1 027 ℃以上将会完全分解成UN,UN在1 627 ℃以上也会发生分解。  相似文献   
8.
本文论述了快堆MOX燃料的氧势模型和氧与金属原子比(O/M比)控制原理。Blackburn模型和点缺陷模型是两种常用的核燃料氧势模型,而离子反应平衡常数、热力学数据及实验测量数据是影响氧势模型精确度的主要因素。当要求(U0.75Pu0.25)O2-x燃料的O/M比为1.97时,若在1 750 ℃、0.1 MPa Ar-5%H2气中烧结,采用Blackburn模型进行计算,则理论上要求将氧分压控制在1.07×10-5 Pa,或将氧势控制在-386.15 kJ/mol;采用点缺陷模型进行计算,要求将氧分压控制在0.70×10-5 Pa,或将氧势控制在-393.22 kJ/mol。当要求O/M比分别为1.95、1.96、1.97、1.98、1.99、1.995时,理论上应将气体中的水分含量分别控制在370.4、739.8、1 633.7、4 403.6、17 855.4、43 064.8 ppm,或将气体露点分别控制在-30.10、-23.27、-14.98、-3.77、13.83、26.16 ℃。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号