首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
原子能技术   5篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
采用2-乙基己基磷酸单-2-乙基己基酯(P507)作为萃取剂,磺化煤油为稀释剂,研究了盐酸体系中La~(3+)和Ac~(3+)的萃取分离性能。研究了酸度、萃取剂皂化度、La~(3+)浓度和盐析剂浓度等条件对萃取分离性能的影响。当萃取剂皂化度为30%、母液酸度pH=2.45、La~(3+)质量浓度约32g/L、盐析剂浓度c(KNO_3)=3mol/L时,该萃取体系对镧锕具有较好的分离效果,分离因子SFLa/Ac可达67.6。采用优化的实验条件,经过扩大实验证明,氧化镧产品中的放射性得到有效去除,氧化镧中~(227)Ac去除率约89.97%,得到了纯化氧化镧产品。  相似文献   
2.
131I是一种重要的医用放射性同位素,但因湿法分离技术上的缺陷,使得从铀裂变产物中获取131I的工艺具有环境污染严重、提取效率低的缺点。因铀裂变产物中131I的产额较高,为拓展131I的获取途径,提高铀裂变产物的利用效率,开展铀裂变产物中131I分离的新工艺研究十分必要。与传统湿法分离工艺不同,本工作采用了干馏法进行铀裂变产物中131I的分离。为了得到高的131I分离效率,将分离过程分为低温粉化、高温干馏和中低温保温三个阶段,并研究高温干馏阶段温度对131I分离效率的影响。实验发现:当干馏温度高于950 ℃时,131I的分离效率≥98%。此外,研究结果还表明,在该干馏温度下,碘和103Ru 均可挥发出铀靶片,但产物收集液中却仅含有碘。为了解释这一现象,对碘的分离过程进行分析,结合实验结果和理论计算,推测挥发物中碘和103Ru分离的原因为:103Ru与氧反应生成挥发性RuO4,从铀的裂变产物挥发出;因加热管内温度较高,RuO4在迁移过程中发生了分解,生成RuO2沉积在加热管内部。因此,利用干馏法从铀的裂变产物中分离131I时,为了得到放化纯度高的碘产品,不仅要合理规划分离过程,还需科学设计加热管的长度。  相似文献   
3.
通过实验室制备的UO2模拟芯块,分别研究了氧化与还原气氛下,温度、气体组成和保温时间对粉化与转化过程的影响,结果显示,氧化条件为空气/450 ℃/4 h、还原条件为4%(体积分数)H2-Ar/700 ℃/4 h的三次氧化还原循环流程,对UO2模拟芯块和真实天然铀芯块均有良好的粉化效果。针对制成的包含有多种裂变元素的模拟乏燃料,在经过三次氧化还原循环流程处理的基础上,进一步结合1 200 ℃/4 h的更高温挥发技术,形成国内首个模拟后处理氧化挥发首端工艺。该工艺能够使Mo、Te、Se和Ru等半挥发性裂变元素以氧化物的形态被有效去除,去除率均达到85%以上。  相似文献   
4.
以四乙基双三嗪吡啶(C2-BTP)和四种不同链长的N,N,N′,N′-四烷基-3-氧-戊二酰胺(酰胺荚醚:DGA)作为萃取剂、1,2-二氯乙烷作为稀释剂,在硝酸体系中研究了对Am(Ⅲ)和Eu(Ⅲ)的协同萃取行为。结果表明,长链DGA与C2-BTP具有良好的协萃效应,在水相酸度为1.0 mol/L、盐析剂浓度为1.0 mol/L时,C2-BTP与六个碳链DGA(C6-DGA)的混合萃取剂摩尔比为3∶1时,Am(Ⅲ)和Eu(Ⅲ)的分配比(D)比单独使用C2-BTP提高一倍以上,Am(Ⅲ)与Eu(Ⅲ)的分离因子(SF)最高值约为21。利用斜率法分别确定了各个DGA作为单一萃取剂萃取Am(Ⅲ)和Eu(Ⅲ)的平均配位数约为1.5,表明氯代溶剂可能与DGA的配位氧原子发生了相互作用,影响了DGA对Am(Ⅲ)和Eu(Ⅲ)的配位性能。  相似文献   
5.
乏燃料后处理是核燃料循环的关键环节,制约核电的可持续发展。借助于加速器驱动先进核能系统(ADANES)提供的高通量、硬能谱的外源中子,其乏燃料后处理只需除去乏燃料中的挥发性裂变产物和影响次锕系元素嬗变的中子毒物,长寿命的次锕系元素Np、Am、Cm可与二氧化铀一起转化为新的燃料元件在加速器驱动燃烧器中燃烧、嬗变、增殖和产能。基于此,本课题组提出了加速器驱动的乏燃料后处理及再生制备的技术路线,包括高温氧化粉化与挥发、选择性溶解分离和燃料再生制备。本文主要介绍了近几年本课题组在这三方面所取得的一些成就,希望能为加速器驱动先进核能系统的乏燃料后处理提供基础数据。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号